
SLR ������
��	
��� Tips, Techniques

& Tricks for Natural

� � � �

������	

November 2001
Vol. 11, No. 4

��	����������	��	

November 2001 ❖ �

In this Issue

Cover Stories

Boston --------------------- 1
Darmstadt ----------------- 3

“How to get performance
using the right Natural
statements”

System Variables
and DECIDE -------------- 4
IF --------------------------- 8
Arrays --------------------- 10
More on arrays ---------- 15
WRITE WORK FILE ----- 18
READ WORK FILE ------ 20

“Did you know” Seldom
used, or unknown fea-
tures of Natural

COMPRESS NUMERIC - 28
IC, LC --------------------- 30
%C %Z -------------------- 33
Ampersand Variables--- 34
Variable sizing ----------- 36
Array Subscripts -------- 39
External Objects -------- 40

Boston first
A bit of true humor first. I had developed Powerpoint presenta-
tions for Boston on my desktop PC. A few days before the Boston
conference I put them on a diskette and transferred them to my
laptop which would accompany me to Boston. No problems, I even
had the diskette as a backup.

I had also developed a lot of programs under Natural 4.1.2 on my
desktop. The night before driving up to the conference (No, this
had nothing to do with a fear of flying; I always drive to Boston;
takes me about 5 hours door to door, and I have my car there
should I want to drive somewhere) I used SYSTRANS to unload the
programs to a diskette, then transferred the programs to my
laptop. Still no problems.

Then, the fun began. One of my presentations was devoted to
using Natural 4/5 to develop event driven systems using Dialogs.
When I tried to run the Dialogs from my desktop (Natural 4.1.2) on
my laptop (Natural 4.1.1), they would not run. After a lot of
cursing, I found myself reading the release notes for Version 4.1.2.
They said that although all 4.1.1 structures would run under
4.1.2, the converse was not true. In particular, Dialogs were not
backwards compatible.

I had several options. I could have gone searching for my 4.1.2 CD
and upgraded my laptop to 4.1.2. I was tired (as SAG-L readers
know, I am at my computer EARLY, 5:30 AM, and asleep early as
well). The prospect of doing an install when I was quite tired was
not very attractive. Second option. I had Version 5 on my laptop.
However, this was a pre-release version. Did I want to risk giving a
presentation using software I had not had time to play with? Not
really. (ed note. Having now had some time to play with Version 5,
this would have worked just fine. The pre release 5 seems to be
quite bug free).

Just when I was about to pick one of the rather unattractive
alternatives (probably the upgrade), I realized I had another alter-
native. I was, after all, driving up to Boston. I had a car that was
only half filled with my “stuff” (brochures, etc). I had already
planned to take my Desktop monitor to hook up to my laptop for
display at my vendors booth. Why not just go all the way and take
my desktop? Why not indeed?

Inside Natural
Inside Natural published quarterly by:
S.L.ROBINSON & ASSOCIATES INC.
28 Teal Drive
Post Office Box L1235
Langhorne, Pennsylvania 19047

Telephone: - (215) 741-0820
Fax: --------- (215) 741-1351
E-mail -- SLRINC@AOL.COM
Web Page ----------------------
http://members.aol.com/slrinc

Domestic Subscriptions:
1 years - $ 95
2 years - $ 165
3 years - $ 225

Foreign Subscriptions:
Add $15 per year per subscription

or
Contact U.S. office for address/
telephone of Regional Distributors

Subscriptions over ten from one
company - 10% discount

Inside Natural is also distributed
on magnetic media for unlimited
copying
Subscription rate for this service
is
$1,500 per year.
Back issues available : $25/issue

Copyright © 2001, S.L. ROBINSON
& ASSOCIATES. All rights re-
served. No portion of Inside
Natural may be used/reproduced
without the prior written consent
of S.L. ROBINSON & ASSOCIATES.

S.L.ROBINSON & ASSOCIATES,
it’s logo, and Inside Natural are
trademarks of S.L.ROBINSON
& ASSOCIATES, INC.

Adabas® and Natural® are regis-
tered trademarks of Software AG.

2 �❖ Inside Natural

��	����������	��	

So there I was checking in at the Hyatt Hotel with all my “stuff”
including a Desktop computer. Clearly I required the assistance of
a bellhop to bring all this to my room. After the bellhop had put the
computer on the desktop, and was about to pickup the large box
containing my monitor, he turned to me and said, quite simply,
“They make smaller computers now, called laptops”. I could only
chuckle to myself. Everyone is into computers these days. The
night watchman in the Vendor area wanted to know where I got my
screen saver (a memorial to the World Trade Center disaster). I
made a copy for him; then we had a technical discussion regarding
the pros/cons of switching to XP.

The Boston Conference had two major themes. The first was re-
flected by Software AG presentations. Version 5 of Natural is here,
along with SpoD (Single Point of Development) which provides a
really nice interface between PC’s running Version 5 and main-
frames running Version 3.1.5. There were quite a number of
presentations on these topics which I deliberately skipped. Why?

The Boston conference is getting very robust. Most time slots had
six or seven concurrent sessions. And that doesn’t count the
informal sessions that always seem to follow some interesting
presentations (especially the late afternoon sessions which seem to
run into pub time). Since I knew that some of the presentations
would be repeated in Darmstadt, I skipped them in Boston. By the
way, the breadth of the Boston Conference means that it is difficult
for one person to “cover” the conference for a company. Many
companies are sending multiple attendees all of whom are still
being kept quite busy.

The other major theme from Boston was reflected by several user
presentations, and a lot of informal sessions. The web is still a hot
topic. Companies are still concerned with “putting it all on the
web”. Now a web “presence” is certainly valuable, the idea of
putting all systems which have any exogenous links on the web is
a bit extreme. Not all, indeed, perhaps, not many of a company’s
customers, are willing to give up “personal contact” in exchange for
a web interface, even a well designed one. And, unfortunately,
many websites are not terribly well designed. I have been extremely
frustrated navigating the websites of some very well known, and
large, companies. Nonetheless, webifying, as indicated by the ses-
sions and the interest, is still the big topic these days.

Just a note, the Boston conference will be back in Boston next
year, at the Hyatt, during the same time slot. Check occasionally at
http://www.wizinc.com for updates. ❖

November 2001 ❖ 3

Now Darmstadt

The Darmstadt conference was the first of what
will be known as the European Natural Program-
mers User Group (ENPUG), unless one of the pro-
posed alternative names is adopted. The alterna-
tive names were suggested when it was apparent
that attendees will come from Africa, Asia and the
Middle East as well as Europe.

Since this was a mainly organizational meeting,
there were no user presentations. Indeed, I pre-
sented the only session that was not presented by
Software AG or one of its affiliates. Unlike Boston,
which ENPUG will hopefully match in size after a
few meetings, this initial meeting had but one
track. Several of the presentations were the ones I
deliberately skipped in Boston since I knew they
would be repeated in Darmstadt. For example, I
skipped the presentation on Natural Engineer in
Boston, and caught it in Darmstadt. I did attend a
couple of the Web enabling presentations in Bos-
ton, and saw a different one in Darmstadt.

I have always been a fan of Natural on the PC. I
have worked with the entire sequence of products
starting with Natural for Windows and NT, Natural
New Dimension, Natural Lightstorm, and now Nat-
ural 4. I have found the development platform for
Natural 4 to be quite a friendly one. Therefore I am
quite intrigued by the possibilities of Natural 5 and
SpoD. Being able to work with “mainframe Natu-
ral” from the PC Natural platform seems to be the
best of both worlds. No more “extra software” be-
tween me and the mainframe. Goodbye to
SYSTRANS. The new interface is quite programmer
friendly. Next issue, after I have had a bit of time to
play with the interface, I will have an indepth
article based on my experiences.

There were three “techie” presentations in Darms-
tadt. You must understand what I consider a “tech-
ie” presentation. It is one in which the audience
can participate since the presentation involves
material they are familiar with. Even though the
Version 5 and SpoD presentations contained tech-
nical material, it was new material for everyone in
the audience, hence note taking was the order of
the day, with few questions.

The three techie presentations were Andreas
Schuetz presenting “Did you know; Seldom used
or unknown features in Natural”, Thomas
Frischmann (who has been with the Natural devel-
opment team almost as long as Andreas) present-
ing “How to get performance using the right Natu-
ral statements” and my presentation on the Re-
corder and the Debugger. I will explore some of the
topics from Thomas and Andreas’s presentations
in this issue.

The next ENPUG meeting is tentatively scheduled
for April in either Zurich or Geneva. For more
information, send an e-mail to Dieter Klanke at
dieter.klanke@softwareag.com ❖

Technical Potpourri

The scheduling for the Darmstadt conference was
rather tight. Most of the sessions were scheduled
for an hour or so. Thomas Frischmann had even
less than that by the time his presentation started
in the last time slot of the conference (someone,
okay, me, had taken more than their allotted time).
Thomas had over thirty items to discuss in less
than an hour. He did an excellent job in getting
through the presentation within the allotted time.
However, I thought that some of the topics really
could use a bit more time. So, I decided to take
some of his topics and expand them here.

Some of the topics are fairly well known, others a
bit obscure. All have the potential to improve per-
formance of your systems. I suggest you take a
look at them and consider how they would apply to
your environment. I know that I, in the process of
preparing this column, was more than a bit sur-
prised by how costly certain “errors” could be. ❖

4 ❖ Inside Natural

��	
�
������

The “price” of System
Variables and DECIDE

It is interesting how one topic of discussion can
quickly lead to another. Sometimes, as in this
case, the “spinoff” topic ends up being more inter-
esting (at least to me) than the original topic.

One of Thomas’s performance tips concerned the
use of System Variables. I remember hearing, years
ago, probably from Andreas Schuetz, that access-
ing System Variables was fairly expensive. Why?
System Variables are not stored “local” to your
program. They are stored in various Natural con-
trol structures. Accessing them requires that Nat-
ural run special access modules. This is expen-
sive. Okay, not if you just do it once or twice.
Repeated access however, can be expensive. In the
second half of this article, we will take a look at
just how expensive this can be.

Now, however, we will look at something else. The
example that Thomas used to show how expensive
accessing System Variables can be was:

 MOVE *PF-KEY TO #PF-KEY
DECIDE ON FIRST VALUE OF *PF-KEY DECIDE ON FIRST VALUE OF #PF-KEY
VALUE ‘PF1’.. VALUE ‘PF1’..
VALUE ‘PF2’.. VALUE ‘PF2’..
:::: ::::
VALUE ‘PF12’.. VALUE ‘PF12’..
NONE VALUE .. NONE VALUE ..

END-DECIDE END-DECIDE

Why, I asked myself, should this be a problem?
Natural is certainly smart enough, when executing
the code on the left, to only obtain *PF-KEY once. I
asked Thomas about this and he said that Natural
did indeed obtain *PF-KEY repeatedly for the code
shown. Andreas Schuetz was sitting just a few
chairs to my left. Since I was sitting in the back
row, it was easy to get up, slide to my left a few
chairs and whisper my question to Andreas. Well,
said Andreas, a DECIDE is just a series of IF
statements. So, Natural probably repeats the ac-
quisition of *PF-KEY.

“Why does it do that?”, I asked. If this were a
DECIDE FOR statement, with potentially many
variables involved in the various clauses, I could
understand the distinct IF statements. But this is
a DECIDE ON. There is only one variable involved
in a DECIDE ON. Clearly Natural must be smart
enough not to get the variable more than once.

I guess my handwaving, combined with the fact
that it was getting on towards beer time, had an
effect, because Andreas wavered at this point. May-
be there was a difference between the two DE-
CIDE’s. We waited until the end of Thomas’s talk
at which point Andreas was able to switch to Ger-
man to translate my concerns to Thomas. An-
dreas’s animated translation of my observation did
not sway Thomas. It is always a series of IF’s,
Thomas said. I was still unconvinced. Ah, the arro-
gance of the ignorant.

Investigation would have to wait awhile however.
Thomas’s talk was the last of the conference. Then
it was off for a quick beer followed by a 30 minute
drive to a fine goose dinner replete with more beer,
excellent wine, and, for anyone who could remote-
ly claim to be sober, grappa after dessert. Now I
understand why we took taxis to the restaurant
rather than driving. Needless to say, the DECIDE
command was not discussed during dinner, at
least not that I remember.

It was not until I was on a plane, flying home the
following day that I was able to write some code
and begin playing with the DECIDE commands. It
occurred to me that if a DECIDE ON is indeed
treated like a series of IF statements, you could get
some pretty strange results. At least here, I was
correct. Consider the following program. I have
avoided using System Variables for the moment.
No sense confusing two issues in one program.

November 2001 ❖ 5

0010 * THIS PROGRAM DEMONSTRATES A POTENTIAL
0020 * PROBLEM WITH THE DECIDE COMMAND
0030 *
0040 DEFINE DATA LOCAL
0050 1 #A (N3) INIT <1>
0060 END-DEFINE
0070 *
0080 INCLUDE AATITLER
0090 INCLUDE AASETC
0100 *
0110 DECIDE ON EVERY VALUES #A
0120 VALUE 1
0130 WRITE 5T '#A IS 1'
0140 ADD 1 TO #A
0150 VALUE 2
0160 WRITE 5T '#A IS 2'
0170 ADD 1 TO #A
0180 VALUE 3
0190 WRITE 5T '#A IS 3'
0200 ANY VALUE
0210 WRITE 5T 'THIS SHOULD BE PRINTED (ANY VALUE)'
0220 ALL VALUES
0230 WRITE 5T 'CLEARLY THIS CANNOT HAPPEN (ALL VALUES)'
0240 NONE VALUE
0250 WRITE 5T 'CLEARLY THIS WILL NOT HAPPEN'
0260 END-DECIDE
0270 *
0280 END

Okay, the program is a bit silly. Now look at the
output.

 PAGE # 1 DATE: Nov 19, 2001
 PROGRAM: DECIDE01 LIBRARY: INSIDE

 #A IS 1
 #A IS 2
 #A IS 3
 THIS SHOULD BE PRINTED
 CLEARLY THIS CANNOT HAPPEN

Okay, lets take a look at the output. Actually, you
don’t have to look too hard to see the problem.
Since the DECIDE command is basically a series
of IF statements, and we change #A within the
DECIDE clauses, we end up with the rather
strange pronouncement that #A is 1,2, and 3.

Okay, you are saying this was a silly program.
Here is a more realistic piece of code that suffers
from the same problem.

0010 * THIS PROGRAM DEMONSTRATES A POTENTIAL PROBLEM
0020 * WHEN USING *PF-KEY IN A DECIDE COMMAND
0030 *
0050 INCLUDE AATITLER
0060 INCLUDE AASETC
0070 *
0080 SET KEY PF1 PF2 PF3 PF4
0090 *
0100 INPUT 3/10 'THIS WOULD BE A LIST OF ACTIONS FOR'
0110 / 10T 'DIFFERENT PF KEYS. FOR DEMONSTRATION'
0120 / 10T 'PRESS PF2.'
0130 *
0140 DECIDE ON EVERY VALUE OF *PF-KEY
0150 VALUE 'PF1' IGNORE
0160 VALUE 'PF2' PERFORM WAS-PF2
0170 VALUE 'PF3' WRITE 5T 'YES, DESTROY MY DATABASE'
0180 VALUE 'PF4' IGNORE
0190 NONE VALUE REINPUT 'PRESS A VALID PF KEY'
0200 END-DECIDE
0210 *
0220 DEFINE SUBROUTINE WAS-PF2
0230 INPUT 3/10 'THIS MIGHT BE SOME SORT OF CONFIRMATION'
0240 / 10T 'WINDOW FOR PF2. SUPPOSE (OKAY, IT WOULD'
0250 / 10T 'BE POOR DESIGN) THAT YOU CONFIRM BY '
0260 / 10T 'PRESSING PF3.. PRESS THIS KEY (PF3)'
0270 *
0280 * MISCELLANEOUS CODE
0290 END-SUBROUTINE
0300 *
0310 END

The code is not that unusual. Assume PF2 acti-
vates some sort of UPDATE or DELETE command.
Our little subroutine performs a common function,
a confirmation window. I followed the directions in
the code. I first pressed PF2. Then, when prompted
by the confirmation window, I pressed PF3. Here is
the output that follows.

 PAGE # 1 DATE: Nov 20, 2001
 PROGRAM: DECIDE02 LIBRARY: INSIDE

 YES, DESTROY MY DATABASE

Okay, if I went to all the trouble to require confir-
mation for a simple UPDATE or DELETE, I certain-
ly will have a second chance to avoid destroying
the database. The point is that in this program,
like the earlier program, DECIDE01, the value of
*PF-KEY can change during the processing of the
DECIDE command.

What this means is you have to be very careful
how you code your DECIDE commands. For exam-
ple, a DECIDE ON for *PF-KEY should probably be
coded (unlike in DECIDE02 above) as
DECIDE....FIRST. However, to be fair, there is
often occasion to not use FIRST. I have seen many
programs that employ a PF key to indicate an
UPDATE or a DELETE. Then there would be a
VALUE ‘PF5’, ‘PF8’ END TRANSACTION. That is, if
we did either an update or delete, we would issue
an END TRANSACTION. Here, FIRST would not be
appropriate.

6 ❖ Inside Natural

System Variables

Now that we have seen a potential problem with
DECIDE commands, it is time to look at the other
part of this discussion, namely, the “cost” of ac-
cessing System Variables repeatedly. In the follow-
ing program we will contrast the time for two ap-
proaches to testing the value of a System Variable,
namely *PF-KEY.

0010 DEFINE DATA LOCAL
0020 1 #LOOP (P5)
0030 1 #HOLDER (A4)
0040 END-DEFINE
0050 *
0060 INCLUDE AATITLER
0070 INCLUDE AASETC
0080 *
0090 SETA. SETTIME
0100 FOR #LOOP = 1 TO 5000
0110 DECIDE ON FIRST VALUE *PF-KEY
0120 VALUE 'PF6' IGNORE
0130 VALUE 'PF7' IGNORE
0140 VALUE 'PF8' IGNORE
0150 VALUE 'PF9' IGNORE
0160 NONE IGNORE
0170 END-DECIDE
0180 END-FOR
0190 WRITE '*PF-KEY TIME' *TIMD (SETA.)
0200 SETB. SETTIME
0210 FOR #LOOP = 1 TO 5000
0220 *
0230 MOVE *PF-KEY TO #HOLDER
0240 *
0250 DECIDE ON FIRST VALUE #HOLDER
0260 VALUE 'PF6' IGNORE
0270 VALUE 'PF7' IGNORE
0280 VALUE 'PF8' IGNORE
0290 VALUE 'PF9' IGNORE
0300 NONE IGNORE
0310 END-DECIDE
0320 END-FOR
0330 WRITE '#HOLDER TIME' *TIMD (SETB.)
0340 END

Note that in our first loop, we directly test *PF-
KEY. As we noted above, this basically means we
will be obtaining *PF-KEY four times, once for each
VALUE clause. By contrast, in our second loop we
are obtaining *PF-KEY just once for each iteration
of the loop. The value is then placed in #HOLDER
for testing by the DECIDE statement.

 PAGE # 1 DATE: Nov 15, 2001
 PROGRAM: SYSVAR01 LIBRARY: INSIDE

 *PF-KEY TIME 8
 #HOLDER TIME 3

Take a look at the times. More than double for the
*PF-KEY loop. Think that’s bad? I have seen many
programs that use all the PF keys. Here is a timing
with 12 PF keys (yes, I know, there are more than
12 PF keys. As a matter of design principle, I try to
avoid using more than the first twelve. Actually, I
try to use even fewer keys for any given screen. My
experience is that error rates increase markedly
beyond three of four).

0010 DEFINE DATA LOCAL
0020 1 #LOOP (P5)
0030 1 #HOLDER (A4)
0040 END-DEFINE
0050 *
0060 INCLUDE AATITLER
0070 INCLUDE AASETC
0080 *
0090 SETA. SETTIME
0100 FOR #LOOP = 1 TO 5000
0110 DECIDE ON FIRST VALUE *PF-KEY
0120 VALUE 'PF1' IGNORE
0130 VALUE 'PF2' IGNORE
0140 VALUE 'PF3' IGNORE
0150 VALUE 'PF4' IGNORE
0160 VALUE 'PF5' IGNORE
0170 VALUE 'PF6' IGNORE
0180 VALUE 'PF7' IGNORE
0190 VALUE 'PF8' IGNORE
0200 VALUE 'PF9' IGNORE
0210 VALUE 'PF10' IGNORE
0220 VALUE 'PF11' IGNORE
0230 VALUE 'PF12' IGNORE
0240 NONE IGNORE
0250 END-DECIDE
0260 END-FOR
0270 WRITE 5T '*PF-KEY TIME' *TIMD (SETA.)
0280 *
0290 SETB. SETTIME
0300 FOR #LOOP = 1 TO 5000
0310 *
0320 MOVE *PF-KEY TO #HOLDER
0330 *
0340 DECIDE ON FIRST VALUE #HOLDER
0350 VALUE 'PF1' IGNORE
0360 VALUE 'PF2' IGNORE
0370 VALUE 'PF3' IGNORE
0380 VALUE 'PF4' IGNORE
0390 VALUE 'PF5' IGNORE
0400 VALUE 'PF6' IGNORE
0410 VALUE 'PF7' IGNORE
0420 VALUE 'PF8' IGNORE
0430 VALUE 'PF9' IGNORE
0440 VALUE 'PF10' IGNORE
0450 VALUE 'PF11' IGNORE
0460 VALUE 'PF12' IGNORE
0470 NONE IGNORE
0480 END-DECIDE
0490 END-FOR
0500 WRITE 5T '#HOLDER TIME' *TIMD (SETB.)
0510 *
0520 SETC. SETTIME
0530 FOR #LOOP = 1 TO 5000
0540 IGNORE
0550 END-FOR
0560 *
0570 WRITE 5T 'FOR LOOP TIME' *TIMD (SETC.)
0580 END

November 2001 ❖ 7

And the rather emphatic output.

 PAGE # 1 DATE: Nov 25, 2001
 PROGRAM: SYSVAR1X LIBRARY: INSIDE

 *PF-KEY TIME 23
 #HOLDER TIME 3

 FOR LOOP TIME 1

Here are some numbers to seriously consider. I
“threw in” the FOR loop, since that is “overhead”
for both loops. Subtracting that from each loop
time, the relevant times are 22 and 2; a factor of
eleven. This simple coding of a DECIDE for *PF-
KEY is that inefficient.

Of course, you probably would not have an *PF-
KEY test in a loop. It would most likely be used in
an online system following an INPUT statement.
HOWEVER, the potential cost of accessing a Sys-
tem Variable, any System Variable (with the excep-
tion of “loop specific” variables like *NUMBER,
*COUNTER, and *ISN which are stored locally),
repeatedly should warrant careful attention.

Perhaps the most “abused” of the System Vari-
ables would be one of the date variables, for exam-
ple, *DATX. I must confess, I have been (note past
tense; this will not happen again) as guilty as
anyone of writing code like:

READ ORDERS
IF *DATX - ORDER-DATE GT 5

:::
END-IF

Of course, what I should do is a MOVE *DATX TO
#DATE somewhere before the READ loop, then do
an IF #DATE - ORDER-DATE... What does this
error cost?
Here is a simple program.

0010 DEFINE DATA LOCAL
0020 1 #LOOP (P7)
0030 1 #HOLDER (A4)
0040 1 #DATE-1 (D)
0050 1 #DATE-2 (D)
0060 END-DEFINE
0070 *
0080 INCLUDE AATITLER
0090 INCLUDE AASETC
0100 *
0110 MOVE *DATX TO #DATE-1 #DATE-2
0120 SUBTRACT 3 FROM #DATE-2
0130 SETA. SETTIME
0140 FOR #LOOP = 1 TO 150000
0150 IF *DATX - #DATE-2 GT 3
0160 IGNORE
0170 END-IF
0180 END-FOR
0190 WRITE 5T '*DATX TIME' *TIMD (SETA.)
0200 *
0210 SETB. SETTIME
0220 FOR #LOOP = 1 TO 150000
0230 IF #DATE-1 - #DATE-2 GT 3
0240 IGNORE
0250 END-IF
0260 END-FOR
0270 WRITE 5T 'LOCAL VARIABLE TIME' *TIMD (SETB.)
0280 *
0290 SETC. SETTIME
0300 FOR #LOOP = 1 TO 150000
0310 IGNORE
0320 END-FOR
0330 WRITE 5T 'FOR LOOP TIME' *TIMD (SETC.)
0340 END

And the rather interesting output.

 PAGE # 1 DATE: Nov 26, 2001
 PROGRAM: SYSVAR04 LIBRARY: INSIDE

 *DATX TIME 29
 LOCAL VARIABLE TIME 19
 FOR LOOP TIME 8

Subtracting the common FOR loop time of eight
from the other two times, we are looking at 21
versus 11. It is almost twice as expensive to keep
getting *DATX as it is to get it once, move it to a
local variable, and thereafter, reference the local
variable. Okay, for the sticklers out there. It is of
course possible for the date to change during the
running of a program. Make sure this will not be a
problem for your application before switching to
the local variable logic.

8 ❖ Inside Natural

A Surprise

As most readers know, it does not take much to
send me off on a tangent exploring some strange
aspect of Natural. It bothered me that the DECIDE
command retrieved *PF-KEY once per VALUE
clause. I decided (no pun intended) to play a bit.
How about an IF statement with a bunch of OR’s?

0010 DEFINE DATA LOCAL
0020 1 #LOOP (P5)
0030 1 #HOLDER (A4)
0040 END-DEFINE
0050 *
0060 INCLUDE AATITLER
0070 INCLUDE AASETC
0080 *
0090 SETA. SETTIME
0100 FOR #LOOP = 1 TO 15000
0110 IF *PF-KEY = 'PF6' OR = 'PF7' OR = 'PF8' OR = 'PF9'
0120 IGNORE
0130 ELSE
0140 IGNORE
0150 END-IF
0160 END-FOR
0170 WRITE 'IF TIME' *TIMD (SETA.)
0180 *
0190 SETB. SETTIME
0200 FOR #LOOP = 1 TO 15000
0210 DECIDE ON FIRST VALUE *PF-KEY
0220 VALUE 'PF6' IGNORE
0230 VALUE 'PF7' IGNORE
0240 VALUE 'PF8' IGNORE
0250 VALUE 'PF9' IGNORE
0260 NONE IGNORE
0270 END-DECIDE
0280 END-FOR
0290 WRITE 'DECIDE TIME' *TIMD (SETB.)
0300 END

And our rather surprising output.

 PAGE # 1 DATE: Nov 21, 2001
 PROGRAM: SYSVAR03 LIBRARY: INSIDE

 IF TIME 7
 DECIDE TIME 24

I thought this was rather interesting so I immedi-
ately sent an e-mail to the Natural development
team. Back came the answer, the IF, unlike the
DECIDE, will only acquire the value of *PF-KEY
once.

Well, this was interesting. Suppose I was not refer-
encing a System Variable, just a plain old local
variable.

0010 DEFINE DATA LOCAL
0020 1 #LOOP (P7)
0030 1 #HOLDER (A4)
0040 END-DEFINE
0050 *
0060 INCLUDE AATITLER
0070 INCLUDE AASETC
0080 *
0090 SETA. SETTIME
0100 FOR #LOOP = 1 TO 150000
0110 IF #HOLDER = 'PF6' OR = 'PF7' OR = 'PF8' OR = 'PF9'
0120 IGNORE
0130 ELSE
0140 IGNORE
0150 END-IF
0160 END-FOR
0170 WRITE 'IF TIME' *TIMD (SETA.)
0180 *
0190 SETB. SETTIME
0200 FOR #LOOP = 1 TO 150000
0210 DECIDE ON FIRST VALUE #HOLDER
0220 VALUE 'PF6' IGNORE
0230 VALUE 'PF7' IGNORE
0240 VALUE 'PF8' IGNORE
0250 VALUE 'PF9' IGNORE
0260 NONE IGNORE
0270 END-DECIDE
0280 END-FOR
0290 WRITE 'DECIDE TIME' *TIMD (SETB.)
0300 END

And the rather expected output.

 PAGE # 1 DATE: Nov 26, 2001
 PROGRAM: SYSVAR02 LIBRARY: INSIDE

 IF TIME 22
 DECIDE TIME 27

SO, clearly, if I wish to know whether a variable
has one of several values, the IF is a lot more
efficient than the DECIDE.

I will admit that I have always used IFs rather than
DECIDEs for such a requirement. Without ever
quantifying the difference, I have always used IF
rather than DECIDE unless I would be making use
of the “power” of DECIDE. For me, the “power” of a
DECIDE resides in its optional clauses; ANY and
ALL and its required clause NONE.

To duplicate the role of these clauses, while using
IF statements, I have to use a logical variable or a
counter. This makes the code considerably harder
to follow for someone other than the original coder,
hence I opt for the DECIDE. However, in light of
the above, I decided to quantify the difference be-
tween IF and DECIDE for several different scenar-
ios. In this first test, none of the conditions are
met.

November 2001 ❖ 9

0010 * THIS PROGRAM DEMONSTRATES A TIMING
0020 * COMPARISON BETWEEN IF’S AND DECIDE COMMANDS
0030 *
0040 DEFINE DATA LOCAL
0050 1 #A (N3) INIT <5>
0060 1 #FLAG (L)
0070 1 #LOOP (P7)
0080 END-DEFINE
0090 *
0100 INCLUDE AATITLER
0110 INCLUDE AASETC
0120 *
0130 SETA. SETTIME
0140 FOR #LOOP = 1 TO 150000
0150 DECIDE ON EVERY VALUES #A
0160 VALUE 1,3
0170 IGNORE
0180 VALUE 2,4
0190 IGNORE
0200 ANY VALUE
0210 WRITE 'THIS SHOULD NOT BE PRINTED (ANY VALUE)'
0220 NONE VALUE
0230 IGNORE
0240 END-DECIDE
0250 END-FOR
0260 WRITE 5T 'DECIDE TIME' *TIMD (SETA.)
0270 *
0280 SETB. SETTIME
0290 FOR #LOOP = 1 TO 150000
0300 *
0310 IF #A = 1 OR = 3
0320 MOVE TRUE TO #FLAG
0330 END-IF
0340 IF #A = 2 OR = 4
0350 MOVE TRUE TO #FLAG
0360 END-IF
0370 IF #FLAG = TRUE
0380 IGNORE
0390 ELSE
0400 IGNORE
0410 END-IF
0420 END-FOR
0430 WRITE 5T 'IF TIME' *TIMD (SETB.)
0440 *
0450 END

And our output:

 PAGE # 1 DATE: Nov 26, 2001
 PROGRAM: DECIDE03 LIBRARY: INSIDE

 DECIDE TIME 35
 IF TIME 31

As expected, the DECIDE command is still more
expensive than the IF statements. However, the
difference is fairly small, about 10%. I was curious
whether the difference would be any different if
one of the conditions were met. Basically, this
would add the cost of a MOVE TRUE... to the IF
loop and the counterpart cost for the DECIDE,
which is probably the same sort of flag setting.

0010 * THIS PROGRAM DEMONSTRATES A TIMING
0020 * COMPARISON BETWEEN IF’S AND DECIDE COMMANDS
0030 *
0040 DEFINE DATA LOCAL
0050 1 #A (N3) INIT <2>
0060 1 #FLAG (L)
0070 1 #LOOP (P7)
0080 END-DEFINE
0090 *
0100 INCLUDE AATITLER
0110 INCLUDE AASETC
0120 *
0130 SETA. SETTIME
0140 FOR #LOOP = 1 TO 150000
0150 DECIDE ON EVERY VALUES #A
0160 VALUE 1,3
0170 IGNORE
0180 VALUE 2,4
0190 IGNORE
0200 ANY VALUE
0210 IGNORE
0220 NONE VALUE
0230 IGNORE
0240 END-DECIDE
0250 END-FOR
0260 WRITE 5T 'DECIDE TIME' *TIMD (SETA.)
0270 *
0280 SETB. SETTIME
0290 FOR #LOOP = 1 TO 150000
0300 *
0310 IF #A = 1 OR = 3
0320 MOVE TRUE TO #FLAG
0330 END-IF
0340 IF #A = 2 OR = 4
0350 MOVE TRUE TO #FLAG
0360 END-IF
0370 IF #FLAG = TRUE
0380 IGNORE
0390 ELSE
0400 IGNORE
0410 END-IF
0420 END-FOR
0430 WRITE 5T 'IF TIME' *TIMD (SETB.)
0440 *
0450 END

And our timings.

 PAGE # 1 DATE: Nov 26, 2001
 PROGRAM: DECIDE04 LIBRARY: INSIDE

 DECIDE TIME 31
 IF TIME 28

Now this is rather interesting. It shows how you
can mentally go down one path and fail to under-
stand what might happen. I expected that the
timings for DECIDE04 would be greater than those
for DECIDE03. Why? As noted above, I expected
the extra MOVE TRUE TO #FLAG for the IF code,
and the counterpart code for the DECIDE, would
result in slight increases to the times, not the
slight decreases shown above.

10 ❖ Inside Natural

What did I forget? Take a look at the IF #A = 2 OR
= 4. Since #A = 2, Natural is smart enough not to
bother doing the test for = 4. A similar savings can
be expected for the DECIDE clause VALUE 2,4. At
least that was my guess based on looking at the
code. I changed the INIT value of #A to 4 rather
than 2, and re-ran the program. Here are the
results:

 PAGE # 1 DATE: Nov 26, 2001
 PROGRAM: DECIDE05 LIBRARY: INSIDE

 DECIDE TIME 36
 IF TIME 32

Note the slight increase (36 vs 35 and 32 vs 31)
compared with DECIDE03 above. This would be
the “cost” of the additional MOVE TRUE TO #A’s
and the counterpart internal operation for the DE-
CIDE.

Summary

Some “absolutes” first. Retrieving System Variables
is EXPENSIVE. Try to avoid repetitive retrievals of
the same value (e.g. *DATX). Instead, retrieve the
System Variable once and store it in a local vari-
able. Thereafter, use the local variable.

Be careful with DECIDE commands. They are in-
deed independent, serial, IF statements. Changing
a variable in the DECIDE can result in “strange”
results. This is easier to have happen with DE-
CIDE FOR’s than DECIDE ON’s (more variables
might be involved).

IF’s with OR’s are more efficient than DECIDEs at
ascertaining if a variable has one of several values.
Of course, if you also need to know “which value”,
it is probably better (and more efficient) to use a
DECIDE with a VALUE clause for each value you
are searching for. The ANY clause will get you the
OR condition and the individual VALUE clauses
will identify the specific value. ❖

Arrays, Scalars, and
SUBSTRING

Okay, you have an idea from the last article about
the theme of Thomas’s talk. It was mainly con-
cerned with performance. What surprised me was
how many programmers are not aware of some of
the simple ways to improve Natural performance.

Consider arrays. Which should be faster, a refer-
ence to something like #ARRAY (3) or a reference to
something like #ARRAY (#INDEX) ? “Clearly” the
constant three should be faster (we will see later
that this is NOT true). Yet I see people writing code
like:

IF some criteria
MOVE 2 TO #SUB
ELSE
MOVE 3 TO #SUB
END-IF

MOVE #ARRAY (#SUB) TO #PROCESS

What does this cost in terms of performance. Here
is a rather simple example:

0010 * THIS PROGRAM SHOWS THE SIGNIFICANCE OF A SEEMINGLY
0020 * UNIMPORTANT PROGRAMMING DECISION REGARDING ARRAYS
0030 *
0040 DEFINE DATA LOCAL
0050 1 #ARRAY (A5/1:5)
0060 1 #INDEX (I4)
0070 1 #TARGET (A5)
0080 1 #CRITERIA (A3)
0090 1 #LOOP (P7)
0100 END-DEFINE
0110 *
0120 INCLUDE AATITLER
0130 INCLUDE AASETC
0140 *
0150 SETA. SETTIME
0160 FOR #LOOP = 1 TO 150000
0170 IF #CRITERIA = ' '
0180 COMPUTE #INDEX = 2
0190 ELSE
0200 COMPUTE #INDEX = 3
0210 END-IF
0220 MOVE #ARRAY (#INDEX) TO #TARGET
0230 END-FOR
0240 WRITE 5T 'VARIABLE SUBSCRIPT TIME' *TIMD (SETA.)
0250 *
0260 SETB. SETTIME
0270 FOR #LOOP = 1 TO 150000
0280 IF #CRITERIA = ' '
0290 MOVE #ARRAY (2) TO #TARGET
0300 ELSE
0310 MOVE #ARRAY (3) TO #TARGET
0320 END-IF
0330 END-FOR
0340 WRITE 5T 'FIXED SUBSCRIPT TIME' *TIMD (SETB.)
0350 END

November 2001 ❖ 11

 PAGE # 1 DATE: Nov 30, 2001
 PROGRAM: ARRAY04 LIBRARY: INSIDE

 VARIABLE SUBSCRIPT TIME 18
 FIXED SUBSCRIPT TIME 16

A ten percent improvement in performance, merely
by writing better code. Note that the real difference
here is the elimination of the “extra” COMPUTE
statement, not the difference between a fixed and a
variable subscript (to repeat, more about this lat-
er).

In general, referencing a specific variable is con-
siderably more efficient than referencing an array.
Why? Consider all the work Natural must do for
any array reference. First, Natural must “locate”
the specified array member. Even a constant sub-
script, like the number 3, requires a computation.
A variable subscript like #INDEX requires even
more computation. Then, Natural must do an “out
of bounds” check, to ensure you are not trying to
reference an occurrence that is beyond the de-
clared extent of the array. All of this consumes
CPU time. Here is an informative little program:

0010 * THIS PROGRAM SHOWS THE SIGNIFICANCE OF A SEEMINGLY
0020 * UNIMPORTANT PROGRAMMING DECISION REGARDING ARRAYS
0030 *
0040 DEFINE DATA LOCAL
0050 1 #ARRAY (A5/1:5)
0060 1 REDEFINE #ARRAY
0070 2 FILLER 5X
0080 2 #SECOND (A5)
0090 2 #THIRD (A5)
0100 1 #INDEX (I4)
0110 1 #TARGET (A5)
0120 1 #CRITERIA (A3)
0130 1 #LOOP (P7)
0140 END-DEFINE
0150 *
0160 INCLUDE AATITLER
0170 INCLUDE AASETC
0180 *
0190 SETA. SETTIME
0200 FOR #LOOP = 1 TO 150000
0210 IF #CRITERIA = ' '
0220 COMPUTE #INDEX = 2
0230 ELSE
0240 COMPUTE #INDEX = 3
0250 END-IF
0260 MOVE #ARRAY (#INDEX) TO #TARGET
0270 END-FOR
0280 WRITE 5T 'VARIABLE SUBSCRIPT TIME' *TIMD (SETA.)
0290 *
0300 SETB. SETTIME
0310 FOR #LOOP = 1 TO 150000
0320 IF #CRITERIA = ' '
0330 MOVE #ARRAY (2) TO #TARGET
0340 ELSE
0350 MOVE #ARRAY (3) TO #TARGET
0360 END-IF
0370 END-FOR
0380 WRITE 5T 'FIXED SUBSCRIPT TIME' *TIMD (SETB.)
0390 *

0400 SETC. SETTIME
0410 FOR #LOOP = 1 TO 150000
0420 IF #CRITERIA = ' '
0430 MOVE #SECOND TO #TARGET
0440 ELSE
0450 MOVE #THIRD TO #TARGET
0460 END-IF
0470 END-FOR
0480 WRITE 5T 'NON ARRAY TIME' *TIMD (SETC.)
0490
0500 END

And the expected output:

 PAGE # 1 DATE: Nov 30, 2001
 PROGRAM: ARRAY05 LIBRARY: INSIDE

 VARIABLE SUBSCRIPT TIME 18
 FIXED SUBSCRIPT TIME 16
 NON ARRAY TIME 13

You may not have been impressed by the 10%
savings of using fixed rather than variable sub-
scripts. How about the 20% additional savings by
using a simple variable reference (albeit a REDE-
FINE of an array) rather than a fixed subscript
reference?

Not enough of an improvement. After all, there is
only one reference per iteration. Suppose there
were more? A lot more.

0010 * THIS PROGRAM SHOWS THE SIGNIFICANCE OF A SEEMINGLY
0020 * UNIMPORTANT PROGRAMMING DECISION REGARDING ARRAYS
0030 *
0040 DEFINE DATA LOCAL
0050 1 #ARRAY (A5/1:5)
0060 1 REDEFINE #ARRAY
0070 2 #FIRST (A5)
0080 2 #SECOND (A5)
0090 2 #THIRD (A5)
0100 2 #FOURTH (A5)
0110 2 #FIFTH (A5)
0120 1 #INDEX (I4)
0130 1 #TARGET (A5)
0140 1 #CRITERIA (A3)
0150 1 #LOOP (P7)
0160 END-DEFINE
0170 *
0180 INCLUDE AATITLER
0190 INCLUDE AASETC
0200 *
0210 SETB. SETTIME
0220 FOR #LOOP = 1 TO 150000
0230 IF #CRITERIA = ' '
0240 MOVE #ARRAY (1) TO #TARGET
0250 MOVE #ARRAY (2) TO #TARGET
0260 MOVE #ARRAY (3) TO #TARGET
0270 MOVE #ARRAY (4) TO #TARGET
0280 MOVE #ARRAY (5) TO #TARGET
0290 MOVE #ARRAY (1) TO #TARGET
0300 MOVE #ARRAY (2) TO #TARGET
0310 MOVE #ARRAY (3) TO #TARGET
0320 MOVE #ARRAY (4) TO #TARGET
0330 MOVE #ARRAY (5) TO #TARGET
0340 END-IF
0350 END-FOR
0360 WRITE 5T 'FIXED SUBSCRIPT TIME' *TIMD (SETB.)

12 ❖ Inside Natural

0370 *
0380 SETC. SETTIME
0390 FOR #LOOP = 1 TO 150000
0400 IF #CRITERIA = ' '
0410 MOVE #FIRST TO #TARGET
0420 MOVE #SECOND TO #TARGET
0430 MOVE #THIRD TO #TARGET
0440 MOVE #FOURTH TO #TARGET
0450 MOVE #FIFTH TO #TARGET
0460 MOVE #FIRST TO #TARGET
0470 MOVE #SECOND TO #TARGET
0480 MOVE #THIRD TO #TARGET
0490 MOVE #FOURTH TO #TARGET
0500 MOVE #FIFTH TO #TARGET
0510 END-IF
0520 END-FOR
0530 WRITE 5T 'NON ARRAY TIME' *TIMD (SETC.)
0540
0550 END

And our output:

 PAGE # 1 DATE: Nov 30, 2001
 PROGRAM: ARRAY06 LIBRARY: INSIDE

 FIXED SUBSCRIPT TIME 43
 NON ARRAY TIME 22

Upping the number of references from one to ten
certainly makes a difference. The simple variable
reference is now half the subscript reference.

There is one other way to approach what would
ordinarily be array references, SUBSTRING’s. Many
programmers seem to feel that SUBSTRING is the
fastest way to do anything resembling array opera-
tions. WRONG!! Take a look at the following pro-
gram and output.

0010 * THIS PROGRAM COMPARES SUBSTRING WITH REDEFINE
0020 *
0030 DEFINE DATA LOCAL
0040 1 #STRING (A25)
0050 1 REDEFINE #STRING
0060 2 #FIRST (A5)
0070 2 #SECOND (A5)
0080 2 #THIRD (A5)
0090 2 #FOURTH (A5)
0100 2 #FIFTH (A5)
0110 1 #INDEX (I4)
0120 1 #TARGET (A5)
0130 1 #CRITERIA (A3)
0140 1 #LOOP (P7)
0150 END-DEFINE
0160 *
0170 INCLUDE AATITLER
0180 INCLUDE AASETC

0190 *
0200 SETB. SETTIME
0210 FOR #LOOP = 1 TO 150000
0220 IF #CRITERIA = ' '
0230 MOVE SUBSTRING (#STRING,1,5) TO #TARGET
0240 MOVE SUBSTRING (#STRING,6,5) TO #TARGET
0250 MOVE SUBSTRING (#STRING,11,5) TO #TARGET
0260 MOVE SUBSTRING (#STRING,16,5) TO #TARGET
0270 MOVE SUBSTRING (#STRING,21,5) TO #TARGET
0280 MOVE SUBSTRING (#STRING,1,5) TO #TARGET
0290 MOVE SUBSTRING (#STRING,6,5) TO #TARGET
0300 MOVE SUBSTRING (#STRING,11,5) TO #TARGET
0310 MOVE SUBSTRING (#STRING,16,5) TO #TARGET
0320 MOVE SUBSTRING (#STRING,21,5) TO #TARGET
0330 END-IF
0340 END-FOR
0350 WRITE 5T 'SUBSTRING TIME' *TIMD (SETB.)
0360 *
0370 SETC. SETTIME
0380 FOR #LOOP = 1 TO 150000
0390 IF #CRITERIA = ' '
0400 MOVE #FIRST TO #TARGET
0410 MOVE #SECOND TO #TARGET
0420 MOVE #THIRD TO #TARGET
0430 MOVE #FOURTH TO #TARGET
0440 MOVE #FIFTH TO #TARGET
0450 MOVE #FIRST TO #TARGET
0460 MOVE #SECOND TO #TARGET
0470 MOVE #THIRD TO #TARGET
0480 MOVE #FOURTH TO #TARGET
0490 MOVE #FIFTH TO #TARGET
0500 END-IF
0510 END-FOR
0520 WRITE 5T 'NON ARRAY TIME' *TIMD (SETC.)
0530 *
0540 SETA. SETTIME
0550 FOR #LOOP = 1 TO 150000
0560 IF #CRITERIA = ' '
0570 IGNORE
0580 END-IF
0590 END-FOR
0600 WRITE 5T 'DUMMY FOR LOOP TIME' *TIMD (SETA.)
0610
0620 END

And the rather significant times:

 PAGE # 1 DATE: Nov 30, 2001
 PROGRAM: ARRAY08 LIBRARY: INSIDE

 SUBSTRING TIME 43
 NON ARRAY TIME 22
 DUMMY FOR LOOP TIME 12

I remembered to include the “dummy” FOR loop,
which is “overhead” for both loops. A true perfor-
mance comparison, therefore, would be 43 - 12
versus 22 - 12; or 31 versus 10. That’s a factor of
three. Again, clearly, the REDEFINE’d simple vari-
able far outperforms its alternatives. In this case,
it is the SUBSTRING that suffers by comparison.

Here is a comparison of all three techniques.

November 2001 ❖ 13

0010 * THIS PROGRAM SHOWS A COMPARISON OF ALL THE ARRAY
0020 * REFERENCING TECHNIQUES
0030 *
0040 DEFINE DATA LOCAL
0050 1 #ARRAY (A5/1:5)
0060 1 REDEFINE #ARRAY
0070 2 #FIRST (A5)
0080 2 #SECOND (A5)
0090 2 #THIRD (A5)
0100 2 #FOURTH (A5)
0110 2 #FIFTH (A5)
0120 1 #STRING (A25)
0130 1 #INDEX (I4)
0140 1 #TARGET (A5)
0150 1 #CRITERIA (A3)
0160 1 #LOOP (P7)
0170 END-DEFINE
0180 *
0190 INCLUDE AATITLER
0200 INCLUDE AASETC
0210 *
0220 SETB. SETTIME
0230 FOR #LOOP = 1 TO 150000
0240 IF #CRITERIA = ' '
0250 MOVE #ARRAY (1) TO #TARGET
0260 MOVE #ARRAY (2) TO #TARGET
0270 MOVE #ARRAY (3) TO #TARGET
0280 MOVE #ARRAY (4) TO #TARGET
0290 MOVE #ARRAY (5) TO #TARGET
0300 MOVE #ARRAY (1) TO #TARGET
0310 MOVE #ARRAY (2) TO #TARGET
0320 MOVE #ARRAY (3) TO #TARGET
0330 MOVE #ARRAY (4) TO #TARGET
0340 MOVE #ARRAY (5) TO #TARGET
0350 END-IF
0360 END-FOR
0370 WRITE 5T 'FIXED SUBSCRIPT TIME' *TIMD (SETB.)
0380 *
0390 SETC. SETTIME
0400 FOR #LOOP = 1 TO 150000
0410 IF #CRITERIA = ' '
0420 MOVE #FIRST TO #TARGET
0430 MOVE #SECOND TO #TARGET
0440 MOVE #THIRD TO #TARGET
0450 MOVE #FOURTH TO #TARGET
0460 MOVE #FIFTH TO #TARGET
0470 MOVE #FIRST TO #TARGET
0480 MOVE #SECOND TO #TARGET
0490 MOVE #THIRD TO #TARGET
0500 MOVE #FOURTH TO #TARGET
0510 MOVE #FIFTH TO #TARGET
0520 END-IF
0530 END-FOR
0540 WRITE 5T 'NON ARRAY TIME' *TIMD (SETC.)
0550 *
0570 SETA. SETTIME
0580 FOR #LOOP = 1 TO 150000
0590 IF #CRITERIA = ' '
0600 MOVE SUBSTRING (#STRING,1,5) TO #TARGET
0610 MOVE SUBSTRING (#STRING,6,5) TO #TARGET
0620 MOVE SUBSTRING (#STRING,11,5) TO #TARGET
0630 MOVE SUBSTRING (#STRING,16,5) TO #TARGET
0640 MOVE SUBSTRING (#STRING,21,5) TO #TARGET
0650 MOVE SUBSTRING (#STRING,1,5) TO #TARGET
0660 MOVE SUBSTRING (#STRING,6,5) TO #TARGET
0670 MOVE SUBSTRING (#STRING,11,5) TO #TARGET
0680 MOVE SUBSTRING (#STRING,16,5) TO #TARGET
0690 MOVE SUBSTRING (#STRING,21,5) TO #TARGET
0700 END-IF
0710 END-FOR
0720 WRITE 5T 'SUBSTRING TIME' *TIMD (SETA.)
0730 *
0740 SETD. SETTIME
0750 FOR #LOOP = 1 TO 150000
0760 IF #CRITERIA = ' '
0770 IGNORE
0780 END-IF
0790 END-FOR
0800 WRITE 5T 'DUMMY FOR LOOP TIME' *TIMD (SETD.)
0820 END

And our output:

 PAGE # 1 DATE: Nov 30, 2001
 PROGRAM: ARRAY09 LIBRARY: INSIDE

 FIXED SUBSCRIPT TIME 43
 NON ARRAY TIME 22
 SUBSTRING TIME 43
 DUMMY FOR LOOP TIME 12

What do these numbers mean?

Actually, lets start out with what these numbers
do NOT mean. They do not mean you should not
use arrays and they do not mean that you should
not use SUBSTRING.

They DO mean that when either a REDEFINEd
simple variable or an array reference will do, use
the simple variable. Similarly, when the same sim-
ple variable can be used in lieu of a SUBSTRING
reference, use the simple variable.

However, there are numerous scenarios where ar-
rays and SUBSTRING are obviously appropriate.
Suppose I want, in turn, to test all the members of
an array and perform actions based on their val-
ues. Clearly I do not want to “straight line code”
this for the sake of saving a few machine cycles.
Besides, depending on the size of the array,
straight line code referencing #ONE,
#TWO,...#NINETY-THREE etc. will almost certain-
ly exceed Natural program size.

Note that SUBSTRING and array reference are
identical. This is rather interesting, but not totally
surprising. Why? Note that I have fixed starting
positions and fixed sizes. This makes the compari-
son “fair”. But suppose I wrote some “bad code”.
The following program is rather interesting. It con-
trasts bad array code, good array code, bad SUB-
STRING code and good SUBSTRING code.

14 ❖ Inside Natural

0010 * THIS PROGRAM COMPARES SUBSTRING WITH ARRAYS;
0020 * GOOD CODE WITH BAD
0030 *
0040 DEFINE DATA LOCAL
0050 1 #STRING (A25)
0060 1 REDEFINE #STRING
0070 2 #ARRAY (A5/1:5)
0080 1 #INDEX (I4)
0090 1 #TARGET (A5)
0100 1 #CRITERIA (A3)
0110 1 #LOOP (P7)
0120 1 #ELEVEN (I4) INIT <11>
0130 1 #FIVE (I4) INIT <5>
0140 1 #THREE (I4) INIT <3>
0150 END-DEFINE
0160 *
0170 INCLUDE AATITLER
0180 INCLUDE AASETC
0190 *
0200 SETB. SETTIME
0210 FOR #LOOP = 1 TO 500000
0220 MOVE SUBSTRING (#STRING,11,5) TO #TARGET
0230 END-FOR
0240 WRITE 5T 'GOOD SUBSTRING TIME' *TIMD (SETB.)
0250 *
0260 SETC. SETTIME
0270 FOR #LOOP = 1 TO 500000
0280 MOVE SUBSTRING (#STRING,#ELEVEN,#FIVE) TO #TARGET
0290 END-FOR
0300 WRITE 5T 'BAD SUBSTRING TIME' *TIMD (SETC.)
0310 *
0320 SETD. SETTIME
0330 FOR #LOOP = 1 TO 500000
0340 MOVE #ARRAY (3) TO #TARGET
0350 END-FOR
0360 WRITE 5T 'GOOD ARRAY TIME' *TIMD (SETD.)
0370 *
0380 *
0390 SETA. SETTIME
0400 FOR #LOOP = 1 TO 500000
0410 MOVE #ARRAY (#THREE) TO #TARGET
0420 END-FOR
0430 WRITE 5T 'BAD ARRAY TIME' *TIMD (SETA.)
0440
0450 END

There will be two sets of output. The first is from
Natural 4 on my PC.

 PAGE # 1 DATE: Dec 14, 2001
 PROGRAM: ARRAY15 LIBRARY: INSIDE

 GOOD SUBSTRING TIME 39
 BAD SUBSTRING TIME 39
 GOOD ARRAY TIME 39
 BAD ARRAY TIME 39

The second output times are from a mainframe.
One other difference, all loops were for 300,000
iterations rather than the 500,000 from the PC.

 PAGE # 1 DATE: Dec 14, 2001
 PROGRAM: ARRAY15 LIBRARY: INSIDE

 GOOD SUBSTRING TIME 21
 BAD SUBSTRING TIME 21
 GOOD ARRAY TIME 10
 BAD ARRAY TIME 10

Some observations:

Note that in all cases, the good equals the bad.
What does this mean? Consider #ARRAY(3) and
#ARRAY (#THREE). The times for these are the
same. The only way they can be the same is if
Natural is not taking advantage of “knowing” at
compile time that #ARRAY (3) is a specific string of
bytes. It appears that Natural is basically replac-
ing the three with a pointer to a constant three;
much as it would if you used a three in a COM-
PUTE statement. That is why a redefined variable
is faster than the reference to a three as a sub-
script.

Taking into account the difference between the
number of iterations, the mainframe SUBSTRING
time, per 100,000 iterations, was .70 seconds while
the PC time was .78 seconds. Again, rather inter-
esting to note how close these times were, espe-
cially since my PC is an older 600MhZ system.

What is truly interesting is the comparison of the
array time versus the substring time. On the PC,
these times are the same. On the mainframe, the
array times are half the substring times. I have an
inquiry in to the development team as to why this
is true. While I can see there should be some
difference, a doubling seems excessive. Consider
MOVE #ARRAY(#INDEX) versus MOVE SUB-
STRING (#STRING,#START,#NUMBER).

For the array, Natural has to take the start ad-
dress for the array, add (#INDEX - 1) times the
length of #ARRAY to find the start of the appropri-
ate entry, then move the appropriate number of
characters (length of #ARRAY). For SUBSTRING,
there are similar tasks. Natural must take the
start address for the array, add (#START - 1) to get
the starting position (less work than for the array),
then move the number of characters specified in
the third argument. It just doesn’t seem that the
difference should be that great. Note that the PC
times are identical, which is closer to what I would
expect.

November 2001 ❖ 15

Summary

Actually, the last section of this article covered the
main points:

If you need a specific occurrence of an array, use
REDEFINE to create a simple variable for reference
as opposed to any array or SUBSTRING reference.

On a mainframe, or on the PC, there is no differ-
ence between a constant subscript, say #ARRAY
(3) and a variable subscript, say #ARRAY
(#THREE), where #THREE is an I4 variable with
value three. HOWEVER, neither is as good as a
simple variable that has been REDEFINEd.

On a mainframe, array operations outperform
SUBSTRING operations by a considerable margin.
On a PC, the times are identical. ❖

More on Arrays

About midway through Thomas’s presentation he
had a performance hint that I wanted to take
exception to. Not that there was anything wrong
with his statement, there wasn’t. However, there
was a lot of discussion that should accompany this
particular warning. So, here is that discussion.

Thomas’s comment had to do with the following
two definitions:

DEFINE DATA LOCAL DEFINE DATA LOCAL
1 #GROUP (100) 1 #A (A10/1:100)

2 #A (A10) 1 #B (N10/1:100)
2 #B (N10) END-DEFINE

END-DEFINE

As will be shown below, there is a substantial
performance difference between seemingly simple
commands like RESET #A (*) #B (*).

First, however, lets talk a bit about the difference
between the two structures. The major difference
is simply sequence in memory. The “group” struc-
ture appears in memory as:

#A (1) #B (1) #A (2) #B (2) #A (100) #B (100)

In other words, the data is stored “group-wise”. By
contrast, the “fields” structure is:

#A (1) #A (2) #A (3)......#A (100) #B (1) #B (2)
#B (3)....#B (100)

In other words, the data is stored “field-wise”.

Thomas’s point was that some commands, like
RESET, work more efficiently when the fields being
RESET are contiguous. Here is an example that
contrasts the time required for RESET’s using both
structures.

0010 * THIS PROGRAM CONTRASTS TWO WAYS TO DEFINE AN
0020 * ARRAY AND THE RESULTANT COST OF SIMPLE RESETS
0030 *
0040 DEFINE DATA LOCAL
0050 1 #LOOP (P7)
0060 1 #GROUP (100)
0070 2 #A (A10)
0080 2 #B (A5)
0090 1 #AA (A10/1:100)
0100 1 #BB (A5/1:100)
0110 END-DEFINE
0120 *
0130 INCLUDE AATITLER
0140 INCLUDE AASETC
0150 *
0160 SETA. SETTIME
0170 FOR #LOOP = 1 TO 100000
0180 RESET #A (*) #B (*)
0190 END-FOR
0200 WRITE 5T 'GROUP ARRAY TIME' *TIMD (SETA.) //
0210 *
0220 SETB. SETTIME
0230 FOR #LOOP = 1 TO 100000
0240 RESET #AA (*) #BB (*)
0250 END-FOR
0260 WRITE 5T 'SEPARATE ARRAY TIME' *TIMD (SETB.) //
0270 *
0280 SETC. SETTIME
0290 FOR #LOOP = 1 TO 100000
0300 IGNORE
0310 END-FOR
0320 WRITE 5T 'FOR LOOP TIME' *TIMD (SETC.)
0330 *
0340 END

16 ❖ Inside Natural

And here is our output:

 PAGE # 1 DATE: Nov 30, 2001
 PROGRAM: ARRAY10 LIBRARY: INSIDE

 GROUP ARRAY TIME 108

 SEPARATE ARRAY TIME 14

 FOR LOOP TIME 6

Take a look at the times!! Subtracting the common
FOR loop overhead, the times are 102 and 8. That’s
a factor of almost thirteen. So, is this a reason for
never using the “group-wise” structure? Absolute-
ly not!! Is it a reason for sometimes not using the
“group-wise” structure? Maybe.

First, as will be shown below, not all statements
display the same performance differential. Second,
there are applications where all processing is
“group-wise” rather than “field-wise”. For such ap-
plications, the group-wise structure is clearly most
appropriate.

Lets start by looking at several statements and
their relative efficiency given the two different
structures. First, IF statements.

0010 * THIS PROGRAM CONTRASTS TWO WAYS TO DEFINE AN
0020 * ARRAY AND THE RESULTANT COST OF IF STATEMENTS
0030 *
0040 DEFINE DATA LOCAL
0050 1 #LOOP (P7)
0060 1 #GROUP (100)
0070 2 #A (A10)
0080 2 #B (A5)
0090 1 #AA (A10/1:100)
0100 1 #BB (A5/1:100)
0110 END-DEFINE
0120 *
0130 INCLUDE AATITLER
0140 INCLUDE AASETC
0150 *
0160 SETA. SETTIME
0170 FOR #LOOP = 1 TO 100000
0180 IF #A (*) = 'X'
0190 IGNORE
0200 END-IF
0210 END-FOR
0220 WRITE 5T 'GROUP ARRAY TIME' *TIMD (SETA.) //
0230 *
0240 SETB. SETTIME
0250 FOR #LOOP = 1 TO 100000
0260 IF #AA (*) = 'X'
0270 IGNORE
0280 END-IF
0290 END-FOR
0300 WRITE 5T 'SEPARATE ARRAY TIME' *TIMD (SETB.) //
0310 *

0320 SETC. SETTIME
0330 FOR #LOOP = 1 TO 100000
0340 IGNORE
0350 END-FOR
0360 WRITE 5T 'FOR LOOP TIME' *TIMD (SETC.)
0370 *
0380 END

 PAGE # 1 DATE: Nov 30, 2001
 PROGRAM: ARRAY11 LIBRARY: INSIDE

 GROUP ARRAY TIME 163

 SEPARATE ARRAY TIME 162

 FOR LOOP TIME 6

In fairly recent articles we have discussed how
much more efficient it is to IF #ARRAY(*) rather
than testing #ARRAY (#LOOP) inside of a FOR loop
on #LOOP. The question, answered above, is
whether there is any difference between the two
type of structures in terms of IF (*) efficiency. The
answer is clearly no. The IF deals with each occur-
rence individually, hence their location is irrele-
vant.

In case you missed the article which demonstrates
why you should not set up a FOR loop to test all
the occurrences of an array for a given value, here
is a program that offers rather graphic evidence
why you should not do this.

0010 * THIS PROGRAM CONTRASTS TWO WAYS TO DEFINE AN
0020 * ARRAY AND THE RESULTANT COST OF IF STATEMENTS
0030 *
0040 DEFINE DATA LOCAL
0050 1 #LOOP (P7)
0060 1 #LOOP2 (P7)
0070 1 #GROUP (10)
0080 2 #A (A10)
0090 2 #B (A5)
0100 1 #AA (A10/1:10)
0110 1 #BB (A5/1:10)
0120 END-DEFINE
0130 *
0140 INCLUDE AATITLER
0150 INCLUDE AASETC
0160 *
0170 SETA. SETTIME
0180 FOR #LOOP = 1 TO 100000
0190 IF #A (*) = 'X'
0200 IGNORE
0210 END-IF
0220 END-FOR
0230 WRITE 5T 'GROUP ARRAY TIME' *TIMD (SETA.) //

November 2001 ❖ 17

0240 *
0250 SETB. SETTIME
0260 FOR #LOOP = 1 TO 100000
0270 IF #AA (*) = 'X'
0280 IGNORE
0290 END-IF
0300 END-FOR
0310 WRITE 5T 'SEPARATE ARRAY TIME' *TIMD (SETB.) //
0320 *
0330 SETC. SETTIME
0340 FOR #LOOP = 1 TO 100000
0350 IGNORE
0360 END-FOR
0370 WRITE 5T 'DUMMY FOR LOOP TIME' *TIMD (SETC.) //
0380 *
0390 SETD. SETTIME
0400 FOR #LOOP = 1 TO 100000
0410 IF #A (1) = 'X'
0420 OR #A (2) = 'X'
0430 OR #A (3) = 'X'
0440 OR #A (4) = 'X'
0450 OR #A (5) = 'X'
0460 OR #A (6) = 'X'
0470 OR #A (7) = 'X'
0480 OR #A (8) = 'X'
0490 OR #A (9) = 'X'
0500 OR #A (10) = 'X'
0510 IGNORE
0520 END-IF
0530 END-FOR
0540 WRITE 5T 'SEPARATE OR TIME' *TIMD (SETD.) //
0550 *
0560 *
0570 SETG. SETTIME
0580 FOR #LOOP = 1 TO 100000
0590 FOR #LOOP2 = 1 TO 10
0600 IF #A (#LOOP2) = 'X'
0610 IGNORE
0620 END-IF
0630 END-FOR
0640 END-FOR
0650 WRITE 5T 'FOR LOOP TIME' *TIMD (SETG.)
0660
0670 END

And the output:

 PAGE # 1 DATE: Dec 14, 2001
 PROGRAM: ARRAY12 LIBRARY: INSIDE

 GROUP ARRAY TIME 25

 SEPARATE ARRAY TIME 26

 DUMMY FOR LOOP TIME 5

 SEPARATE OR TIME 38

 FOR LOOP TIME 105

Again, note that the IF(*) notation has the same
time regardless of whether a group or field ap-
proach has been employed for the array. The IF
against individual occurrences is 50% more than
the IF(*) notation, and the FOR loop.... Well, you
can see how bad it is. I find the FOR loop every-
where. It is horribly inefficient. Do not use it. Scan
existing programs and get rid of it. Tell other peo-
ple about it. Okay, I’ll stop now.

MOVE statements

As we saw above, there was quite a difference
between RESETing an array that is part of a group
and an array that is a level one variable. I won-
dered about a simple MOVE statement.

0010 * THIS PROGRAM CONTRASTS TWO WAYS TO DEFINE AN
0020 * ARRAY AND THE RESULTANT COST OF SIMPLE MOVE'S
0030 *
0040 DEFINE DATA LOCAL
0050 1 #LOOP (P7)
0060 1 #GROUP (100)
0070 2 #A (A10)
0080 2 #B (A5)
0090 1 #AA (A10/1:100)
0100 1 #BB (A5/1:100)
0110 END-DEFINE
0120 *
0130 INCLUDE AATITLER
0140 INCLUDE AASETC
0150 *
0160 SETA. SETTIME
0170 FOR #LOOP = 1 TO 100000
0180 MOVE 'ABCDE' TO #B (*)
0190 END-FOR
0200 WRITE 5T 'GROUP ARRAY TIME' *TIMD (SETA.) //
0210 *
0220 SETB. SETTIME
0230 FOR #LOOP = 1 TO 100000
0240 MOVE 'ABCDE' TO #BB (*)
0250 END-FOR
0260 WRITE 5T 'SEPARATE ARRAY TIME' *TIMD (SETB.) //
0270 *
0280 SETC. SETTIME
0290 FOR #LOOP = 1 TO 100000
0300 IGNORE
0310 END-FOR
0320 WRITE 5T 'FOR LOOP TIME' *TIMD (SETC.)
0330 *
0340 END

And our output:

 PAGE # 1 DATE: Dec 15, 2001
 PROGRAM: ARRAY17 LIBRARY: INSIDE

 GROUP ARRAY TIME 66

 SEPARATE ARRAY TIME 67

 FOR LOOP TIME 5

Just like the IF statement comparison, no differ-
ence between the group array structure and the
field array structure. Indeed, the only commands I
found a difference in performance were the RESET
and the commands that are the subject of the next
article on READ and WRITE WORK FILE. ❖

18 ❖ Inside Natural

Work Files

Actually, this will be two articles in one. The first
will address WRITE WORK FILE, the second READ
WORK FILE. Interspersed, there will be what I
expect will be an interesting and enlightening tan-
gent.

WRITE WORK FILE

Lets start with what might be considered the less
interesting of the two work file commands, namely
WRITE WORK FILE (WWF from here on; I get tired
of typing so many letters).

As I mentioned, Thomas was a bit short of time.
There was a brief note towards the end of his
handout (actually, the next to last item) which
said, “When many fields are specified in a READ/
WRITE WORK FILE statement, the data transfer
works faster if the fields specified are defined in a
contiguous manner”.

Now this is one of those things that I heard in the
early days of Natural and never mentally chal-
lenged. It seemed to make sense. As mentioned
earlier, there I was on a plane from Frankfurt back
home to Philadelphia after the ENPUG conference.
I had time available since I had packed the book I
was reading in the suitcase I checked rather than
my laptop bag. I started wondering about WWF. Is
this a compile time check for contiguity, or a run
time check. My guess was that it had to be compile
time. A run time check would be too expensive. I
keyed in a simple starting program. The results
were, to say the least, interesting.

0010 DEFINE DATA LOCAL
0020 1 #ARRAY (A3/1:50) INIT ALL <'ABC'>
0030 1 #LOOP (P7)
0040 1 #STRING (A200)
0050 END-DEFINE
0060 *
0070 INCLUDE AATITLER
0080 INCLUDE AASETC
0090 *
0100 ST2. SETTIME
0110 FOR #LOOP = 1 TO 250000
0120 WRITE WORK FILE 2
0130 #ARRAY (1) #ARRAY (2) #ARRAY (3) #ARRAY (4) #ARRAY (5)
0140 END-FOR
0150 WRITE 10T 'ORDERED TIME' *TIMD (ST2.)

0160 *
0170 ST1. SETTIME
0180 FOR #LOOP = 1 TO 250000
0190 WRITE WORK FILE 1
0200 #ARRAY (1) #ARRAY (2) #ARRAY (3) #ARRAY (5) #ARRAY (4)
0210 END-FOR
0220"WRITE 10T 'NON ORDERED TIME' *TIMD (ST1.) //
0230
0240 END

And the somewhat unexpected output.

 PAGE # 1 DATE: Nov 22, 2001
 PROGRAM: WORK14 LIBRARY: INSIDE

 ORDERED TIME 40
 NON ORDERED TIME 39

Well, that was interesting. Given that the differ-
ence is quite minuscule, suppose that in reality
they are equal. That still says that ordering the
variables in the WWF statement did not improve
performance. I thought about this for awhile. May-
be the effect of ordering only shows up when you
have lots of values. I tried a larger array.

0010 DEFINE DATA LOCAL
0020 1 #ARRAY (A3/1:50) INIT ALL <'ABC'>
0030 1 #LOOP (P7)
0040 1 #STRING (A200)
0050 END-DEFINE
0060 *
0070 INCLUDE AATITLER
0080 INCLUDE AASETC
0090 *
0100 ST2. SETTIME
0110 FOR #LOOP = 1 TO 250000
0120 WRITE WORK FILE 2
0130 #ARRAY (1) #ARRAY (2) #ARRAY (3) #ARRAY (4) #ARRAY (5)
0140 #ARRAY(46) #ARRAY(47) #ARRAY(48) #ARRAY(49)#ARRAY (50)
0150 #ARRAY (6) #ARRAY (7) #ARRAY (8) #ARRAY(9) #ARRAY (10)
0160 #ARRAY(41) #ARRAY (42) #ARRAY(43)#ARRAY(44)#ARRAY (45)
0170 #ARRAY(11) #ARRAY(12)#ARRAY (13)#ARRAY(14)#ARRAY (15)
0180 #ARRAY(36) #ARRAY(37)#ARRAY (38)#ARRAY(39)#ARRAY (40)
0190 #ARRAY(16) #ARRAY(17)#ARRAY (18)#ARRAY(19)#ARRAY (20)
0200 #ARRAY(31) #ARRAY(32) #ARRAY(33) #ARRAY(34) #ARRAY(35)
0210 #ARRAY(26) #ARRAY(27) #ARRAY(28) #ARRAY(29) #ARRAY(30)
0220 #ARRAY(21) #ARRAY(22) #ARRAY(23) #ARRAY(24) #ARRAY(25)
0230 END-FOR
0240 WRITE 10T 'NON ORDERED TIME' *TIMD (ST2.)
0250 *
0260 ST1. SETTIME
0270 FOR #LOOP = 1 TO 250000
0280 WRITE WORK FILE 1
0290 #ARRAY(1) #ARRAY(2) #ARRAY(3) #ARRAY (4) #ARRAY (5)
0300 #ARRAY(6) #ARRAY(7) #ARRAY(8) #ARRAY (9) #ARRAY (10)
0310 #ARRAY(11) #ARRAY(12) #ARRAY(13) #ARRAY(14) #ARRAY(15)
0320 #ARRAY(16) #ARRAY(17) #ARRAY(18) #ARRAY(19) #ARRAY(20)
0330 #ARRAY(21) #ARRAY(22) #ARRAY(23) #ARRAY(24) #ARRAY(25)
0340 #ARRAY(26) #ARRAY(27) #ARRAY(28) #ARRAY(29) #ARRAY(30)
0350 #ARRAY(31) #ARRAY(32) #ARRAY(33) #ARRAY(34) #ARRAY(35)
0360 #ARRAY(36) #ARRAY(37) #ARRAY(38) #ARRAY(39) #ARRAY(40)
0370 #ARRAY(41) #ARRAY(42) #ARRAY(43) #ARRAY(44) #ARRAY(45)
0380 #ARRAY(46) #ARRAY(47) #ARRAY(48) #ARRAY(49) #ARRAY(50)
0390 END-FOR
0400 WRITE 10T 'ORDERED TIME' *TIMD (ST1.) //
0410
0420 END

November 2001 ❖ 19

And the output I expected, but wished I did not
see.

 PAGE # 1 DATE: Nov 22, 2001
 PROGRAM: WORK13 LIBRARY: INSIDE

 NON ORDERED TIME 259
 ORDERED TIME 260

So much for that theory. The two are basically
identical. I decided to add to the previous example
with something I was certain would be more effi-
cient.

0010 DEFINE DATA LOCAL
0020 1 #ARRAY (A3/1:50) INIT ALL <'ABC'>
0030 1 #LOOP (P7)
0040 1 #STRING (A200)
0050 END-DEFINE
0060 *
0070 INCLUDE AATITLER
0080 INCLUDE AASETC
0090 *
0100 ST2. SETTIME
0110 FOR #LOOP = 1 TO 250000
0120 WRITE WORK FILE 2
0130 #ARRAY (1) #ARRAY (2) #ARRAY (3) #ARRAY (4) #ARRAY (5)
0140 #ARRAY(46) #ARRAY(47) #ARRAY(48) #ARRAY(49) #ARRAY(50)
0150 #ARRAY (6) #ARRAY (7) #ARRAY (8) #ARRAY(9) #ARRAY(10)
0160 #ARRAY(41) #ARRAY (42)#ARRAY(43) #ARRAY(44) #ARRAY(45)
0170 #ARRAY(11) #ARRAY(12) #ARRAY(13) #ARRAY(14) #ARRAY(15)
0180 #ARRAY(36) #ARRAY(37) #ARRAY(38) #ARRAY(39) #ARRAY(40)
0190 #ARRAY(16) #ARRAY(17) #ARRAY(18) #ARRAY(19) #ARRAY(20)
0200 #ARRAY(31) #ARRAY(32) #ARRAY(33) #ARRAY(34) #ARRAY(35)
0210 #ARRAY(26) #ARRAY(27) #ARRAY(28) #ARRAY(29) #ARRAY(30)
0220 #ARRAY(21) #ARRAY(22) #ARRAY(23) #ARRAY(24) #ARRAY(25)
0230 END-FOR
0240 WRITE 10T 'NON ORDERED TIME' *TIMD (ST2.) //
0250 *
0260 ST1. SETTIME
0270 FOR #LOOP = 1 TO 250000
0280 WRITE WORK FILE 1
0290 #ARRAY(1) #ARRAY(2) #ARRAY(3) #ARRAY (4) #ARRAY (5)
0300 #ARRAY(6) #ARRAY(7) #ARRAY(8) #ARRAY (9) #ARRAY (10)
0310 #ARRAY(11) #ARRAY(12) #ARRAY(13) #ARRAY(14) #ARRAY(15)
0320 #ARRAY(16) #ARRAY(17) #ARRAY(18) #ARRAY(19) #ARRAY(20)
0330 #ARRAY(21) #ARRAY(22) #ARRAY(23) #ARRAY(24) #ARRAY(25)
0340 #ARRAY(26) #ARRAY(27) #ARRAY(28) #ARRAY(29) #ARRAY(30)
0350 #ARRAY(31) #ARRAY(32) #ARRAY(33) #ARRAY(34) #ARRAY(35)
0360 #ARRAY(36) #ARRAY(37) #ARRAY(38) #ARRAY(39) #ARRAY(40)
0370 #ARRAY(41) #ARRAY(42) #ARRAY(43) #ARRAY(44) #ARRAY(45)
0380 #ARRAY(46) #ARRAY(47) #ARRAY(48) #ARRAY(49) #ARRAY(50)
0390 END-FOR
0400 WRITE 10T 'ORDERED TIME' *TIMD (ST1.) //
0410 *
0420 ST3. SETTIME
0430 FOR #LOOP = 1 TO 250000
0440 WRITE WORK FILE 1
0450 #ARRAY (*)
0460 END-FOR
0470 WRITE 10T 'ORDERED ARRAY TIME' *TIMD (ST3.) //
0480
0490 END

The output was consistent with my expectations:

 PAGE # 1 DATE: Nov 25, 2001
 PROGRAM: WORK16 LIBRARY: INSIDE

 NON ORDERED TIME 255

 ORDERED TIME 253

 ORDERED ARRAY TIME 92

Aha. I was finally right about something. The use
of “array syntax” reduced the time by about two
thirds. Quite a savings.

TANGENT

About this time I was really curious what was
going on. Thusfar, I had run all my examples on
my PC using Natural 4. I decided to run the previ-
ous program on a mainframe. Since timings on a
mainframe tend to vary quite a bit (based on what
else is running) I ran the program several times.
Here are the averages.

 PAGE # 1 DATE: Nov 25, 2001
 PROGRAM: WORK16 LIBRARY: INSIDE

 NON ORDERED TIME 351

 ORDERED TIME 335

 ORDERED ARRAY TIME 186

Now if you are just looking at the numbers in the
box above, you have noticed that the ordered time
is a bit better relative to the non ordered time.
However, given the variation in times due to what
else was on the computer, my guess is that the
“non ordered” and “ordered” times are in reality
equal, as they are on the PC. The ordered array
time is fastest, as was the case on the PC.

20 ❖ Inside Natural

Now look at the PC times (above) versus the main-
frame times. The PC times are considerably FAST-
ER than the mainframe times. Now some explana-
tion is relevant. The PC times are from my 600
MhZ PC, which is running just my program. The
mainframe times are from an evening batch run
competing with all the other batch jobs for ma-
chine cycles. Even so, the mainframe times are 30-
50 percent higher than the PC times. As men-
tioned in the last issue; I will be investigating this
further. This is really an eye opener. Many “main-
framers” have adapted the viewpoint that “real
work” cannot be done on PC’s. The numbers I have
seen thusfar would seem to indicate this is not so.

Back to the main thread

I was curious about the use of a Group name here.
So I first set up a group name that “equated to” an
array. The question is whether Natural would “ex-
pand” the Group Name as #ARRAY (*) or #ARRAY
(1) #ARRAY (2)... etc.

Since the times for these two expansions were so
different, we should be able to tell which expan-
sion took place.

0010 DEFINE DATA LOCAL
0020 1 GROUP-NAME
0030 2 #ARRAY (A3/1:50) INIT ALL <'ABC'>
0040 1 #LOOP (P7)
0050 1 #STRING (A200)
0060 END-DEFINE
0070 *
0080 INCLUDE AATITLER
0090 INCLUDE AASETC
0100 *
0110 ST2. SETTIME
0120 FOR #LOOP = 1 TO 250000
0130 WRITE WORK FILE 2
0140 GROUP-NAME
0150 END-FOR
0160 WRITE 10T 'GROUP TIME' *TIMD (ST2.) //
0170 *
0180 ST1. SETTIME
0190 FOR #LOOP = 1 TO 250000
0200 WRITE WORK FILE 1
0210 #ARRAY (1) #ARRAY(2) #ARRAY(3) #ARRAY(4) #ARRAY (5)
0220 #ARRAY (6) #ARRAY(7) #ARRAY(8) #ARRAY(9) #ARRAY (10)
0230 #ARRAY(11) #ARRAY(12) #ARRAY(13) #ARRAY(14) #ARRAY(15)
0240 #ARRAY(16) #ARRAY(17) #ARRAY(18) #ARRAY(19) #ARRAY(20)
0250 #ARRAY(21) #ARRAY(22) #ARRAY(23) #ARRAY(24) #ARRAY(25)
0260 #ARRAY(26) #ARRAY(27) #ARRAY(28) #ARRAY(29) #ARRAY(30)
0270 #ARRAY(31) #ARRAY(32) #ARRAY(33) #ARRAY(34) #ARRAY(35)
0280 #ARRAY(36) #ARRAY(37) #ARRAY(38) #ARRAY(39) #ARRAY(40)
0290 #ARRAY(41) #ARRAY(42) #ARRAY(43) #ARRAY(44) #ARRAY 45)
0300 #ARRAY(46) #ARRAY(47) #ARRAY(48) #ARRAY(49) #ARRAY(50)
0310 END-FOR
0320 WRITE 10T 'ORDERED TIME' *TIMD (ST1.) //
0330 *
0340 ST3. SETTIME
0350 FOR #LOOP = 1 TO 250000
0360 WRITE WORK FILE 1
0370 #ARRAY (*)
0380 END-FOR
0390 WRITE 10T 'ORDERED ARRAY TIME' *TIMD (ST3.) //
0400
0410 END

And the output, which answers our question.

 PAGE # 1 DATE: Dec 02, 2001
 PROGRAM: WORK17 LIBRARY: INSIDE

 GROUP TIME 94

 ORDERED TIME 254

 ORDERED ARRAY TIME 91

Clearly “GROUP-NAME” was expanded as #ARRAY
(*) since the time for this was very close to the last
time, not the individual occurrences time.

Okay, suppose the Group contained separate
fields, not an array. Would there be any benefit
from having contiguous fields?

0010 DEFINE DATA LOCAL
0020 1 GROUP-NAME
0030 2 #A1 (A3) INIT <'ABC'>
0040 2 #A2 (A3) INIT <'ABC'>
0050 2 #A3 (A3) INIT <'ABC'>
0060 2 #A4 (A3) INIT <'ABC'>
0070 2 #A5 (A3) INIT <'ABC'>
0080 2 #A6 (A3) INIT <'ABC'>
0090 2 #A7 (A3) INIT <'ABC'>
0100 2 #A8 (A3) INIT <'ABC'>
0110 2 #A9 (A3) INIT <'ABC'>
0120 2 #A10 (A3) INIT <'ABC'>
0130 2 #A11 (A3) INIT <'ABC'>
0140 2 #A12 (A3) INIT <'ABC'>
0150 2 #A13 (A3) INIT <'ABC'>
0160 2 #A14 (A3) INIT <'ABC'>
0170 2 #A15 (A3) INIT <'ABC'>
0180 2 #A16 (A3) INIT <'ABC'>
0190 2 #A17 (A3) INIT <'ABC'>
0200 2 #A18 (A3) INIT <'ABC'>
0210 2 #A19 (A3) INIT <'ABC'>
0220 2 #A20 (A3) INIT <'ABC'>
0230 2 #A21 (A3) INIT <'ABC'>
0240 2 #A22 (A3) INIT <'ABC'>
0250 2 #A23 (A3) INIT <'ABC'>
0260 2 #A24 (A3) INIT <'ABC'>
0270 2 #A25 (A3) INIT <'ABC'>
0280 1 #LOOP (P7)
0290 1 #STRING (A200)
0300 END-DEFINE
0310 *
0320 INCLUDE AATITLER
0330 INCLUDE AASETC

November 2001 ❖ 21

0340 *
0350 ST2. SETTIME
0360 FOR #LOOP = 1 TO 250000
0370 WRITE WORK FILE 2
0380 GROUP-NAME
0390 END-FOR
0400 WRITE 10T 'GROUP TIME' *TIMD (ST2.) //
0410 *
0420 ST1. SETTIME
0430 FOR #LOOP = 1 TO 250000
0440 WRITE WORK FILE 1
0450 #A1 #A2 #A3 #A4 #A5 #A6 #A7 #A8 #A9 #A10
0460 #A11 #A12 #A13 #A14 #A15 #A16 #A17 #A18 #A19 #A20
0470 #A21 #A22 #A23 #A24 #A25
0480 END-FOR
0490 WRITE 10T 'ORDERED TIME' *TIMD (ST1.) //
0500 *
0510 ST3. SETTIME
0520 FOR #LOOP = 1 TO 250000
0530 WRITE WORK FILE 1
0540 #A1 #A25 #A3 #A4 #A5 #A14 #A7 #A21 #A9 #A10
0550 #A11 #A12 #A13 #A6 #A15 #A16 #A17 #A18 #A19 #A20
0560 #A8 #A22 #A23 #A24 #A2
0570 END-FOR
0580 WRITE 10T 'UNORDERED TIME' *TIMD (ST3.) //
0590
0600 END

And our output.

 PAGE # 1 DATE: Dec 02, 2001
 PROGRAM: WORK18 LIBRARY: INSIDE

 GROUP TIME 48

 ORDERED TIME 48

 UNORDERED TIME 49

The answer is clearly not. The ordered and group
times were the same. The unordered time was a
tenth of a second behind, for 250,000 records.
Basically, all the times are the same. Rather inter-
esting. Ordering the fields for WRITE WORK FILE
has no apparent effect on elapsed time. The only
thing that does affect elapsed time, quite substan-
tially, is “array notation”.

READ WORK FILE
and

READ WORK FILE RECORD

Okay, on to READ WORK FILE. First a note. At the
end of this article we will consider READ WORK
FILE RECORD. Why not consider it from the start?
In a very real sense, RWF RECORD only works
with single variables (okay, the single variable can
be an array). Some of you are saying, “not true, I
can use a Group Name with a RWF RECORD”. Yes,
you can, but, as you will see, Natural is ignoring
all the variable names within the group. So, be
patient for awhile, we will look at RWF first.

We will start off with a comparison similar to one
we did with WWF; namely, we will look at ordered
fields, unordered fields, and a group name which
equates to ordered fields.

0010 * THIS PROGRAM CREATES A WORK FILE WITH 10000 RECORDS
0020 *
0030 * THEN WE COMPARE THE TIME TO READ THIS WORK FILE
0040 * USING A GROUP NAME, SEPARATE, BUT ORDERED
0050 * FIELD NAMES, AND UNORDERED FIELD NAMES
0060 *
0070 DEFINE DATA LOCAL
0080 1 #GROUP
0090 2 #A1 (A5) INIT <'ABCDE'>
0100 2 #A2 (A5) INIT <'ABCDE'>
0110 2 #A3 (A5) INIT <'ABCDE'>
0120 2 #A4 (A5) INIT <'ABCDE'>
0130 2 #A5 (A5) INIT <'ABCDE'>
0140 2 #A6 (A5) INIT <'ABCDE'>
0150 2 #A7 (A5) INIT <'ABCDE'>
0160 2 #A8 (A5) INIT <'ABCDE'>
0170 2 #A9 (A5) INIT <'ABCDE'>
0180 2 #A10 (A5) INIT <'ABCDE'>
0190 2 #A11 (A5) INIT <'ABCDE'>
0200 2 #A12 (A5) INIT <'ABCDE'>
0210 2 #A13 (A5) INIT <'ABCDE'>
0220 2 #A14 (A5) INIT <'ABCDE'>
0230 2 #A15 (A5) INIT <'ABCDE'>
0240 2 #A16 (A5) INIT <'ABCDE'>
0250 2 #A17 (A5) INIT <'ABCDE'>
0260 2 #A18 (A5) INIT <'ABCDE'>
0270 2 #A19 (A5) INIT <'ABCDE'>
0280 2 #A20 (A5) INIT <'ABCDE'>
0290 2 #A21 (A5) INIT <'ABCDE'>
0300 2 #A22 (A5) INIT <'ABCDE'>
0310 2 #A23 (A5) INIT <'ABCDE'>
0320 2 #A24 (A5) INIT <'ABCDE'>
0330 2 #A25 (A5) INIT <'ABCDE'>
0340 2 #A26 (A5) INIT <'ABCDE'>
0350 2 #A27 (A5) INIT <'ABCDE'>
0360 2 #A28 (A5) INIT <'ABCDE'>
0370 2 #A29 (A5) INIT <'ABCDE'>
0380 2 #A30 (A5) INIT <'ABCDE'>
0390 2 #A31 (A5) INIT <'ABCDE'>
0400 2 #A32 (A5) INIT <'ABCDE'>
0410 2 #A33 (A5) INIT <'ABCDE'>
0420 2 #A34 (A5) INIT <'ABCDE'>
0430 2 #A35 (A5) INIT <'ABCDE'>
0440 2 #A36 (A5) INIT <'ABCDE'>
0450 2 #A37 (A5) INIT <'ABCDE'>
0460 2 #A38 (A5) INIT <'ABCDE'>
0470 2 #A39 (A5) INIT <'ABCDE'>
0480 2 #A40 (A5) INIT <'ABCDE'>
0490 2 #A41 (A5) INIT <'ABCDE'>
0500 2 #A42 (A5) INIT <'ABCDE'>

22 ❖ Inside Natural

0510 2 #A43 (A5) INIT <'ABCDE'>
0520 2 #A44 (A5) INIT <'ABCDE'>
0530 2 #A45 (A5) INIT <'ABCDE'>
0540 2 #A46 (A5) INIT <'ABCDE'>
0550 2 #A47 (A5) INIT <'ABCDE'>
0560 2 #A48 (A5) INIT <'ABCDE'>
0570 2 #A49 (A5) INIT <'ABCDE'>
0580 2 #A50 (A5) INIT <'ABCDE'>
0590 1 #LOOP (P7)
0600 END-DEFINE
0610 *
0620 INCLUDE AATITLER
0630 INCLUDE AASETC
0640 *
0650 FOR #LOOP = 1 TO 50000
0660 WRITE WORK FILE 1 #GROUP
0670 END-FOR
0680 *
0710 SETA. SETTIME
0720 READ WORK FILE 1 #GROUP
0730 END-WORK
0740 WRITE // 10T 'READ WORK FILE GROUP TIME' *TIMD (SETA.)
0750 *
0760 *
0770 SETB. SETTIME
0780 READ WORK FILE 1
0790 #A1 #A2 #A3 #A4 #A5 #A6 #A7 #A8 #A9 #A10
0800 #A11 #A12 #A13 #A14 #A15 #A16 #A17 #A18 #A19 #A20
0810 #A21 #A22 #A23 #A24 #A25 #A26 #A27 #A28 #A29 #A30
0820 #A31 #A32 #A33 #A34 #A35 #A36 #A37 #A38 #A39 #A40
0830 #A41 #A42 #A43 #A44 #A45 #A46 #A47 #A48 #A49 #A50
0840 END-WORK
0850 WRITE // 10T 'READ WORK FILE ORDERED FIELDS TIME'
0855 *TIMD (SETB.)
0860 *
0870 SETC. SETTIME
0880 READ WORK FILE 1
0890 #A50 #A2 #A3 #A4 #A5 #A6 #A7 #A8 #A49 #A10
0900 #A11 #A43 #A13 #A14 #A15 #A16 #A17 #A18 #A19 #A20
0910 #A21 #A22 #A23 #A24 #A25 #A26 #A27 #A28 #A29 #A30
0920 #A31 #A32 #A33 #A34 #A35 #A36 #A37 #A38 #A39 #A40
0930 #A41 #A42 #A12 #A44 #A45 #A46 #A47 #A48 #A9 #A1
0940 END-WORK
0950 WRITE // 10T 'READ WORK FILE NON ORDERED FIELDS TIME'
0955 *TIMD (SETC.)
0960 *
0990 END

And the not surprising times.

 PAGE # 1 DATE: Dec 16, 2001
 PROGRAM: READW06 LIBRARY: INSIDE

 READ WORK FILE GROUP TIME 18

 READ WORK FILE ORDERED FIELDS TIME 18

 READ WORK FILE NON ORDERED FIELDS TIME 17

Well, that pretty well says it all with regard to
ordering for READ WORK FILE; it doesn’t matter.
Why doesn’t ordering matter? More in a moment.

Now lets look at something that I thought would
matter.

0010 * THIS PROGRAM CREATES A WORK FILE WITH 10000 RECORDS
0020 *
0030 * THEN WE COMPARE THE TIME TO READ THIS WORK FILE
0040 * USING A GROUP NAME, AND AN ARRAY
0060 *
0070 DEFINE DATA LOCAL
0080 1 #GROUP
0090 2 #A1 (A5) INIT <'ABCDE'>
0100 2 #A2 (A5) INIT <'ABCDE'>
0110 2 #A3 (A5) INIT <'ABCDE'>
0120 2 #A4 (A5) INIT <'ABCDE'>
0130 2 #A5 (A5) INIT <'ABCDE'>
0140 2 #A6 (A5) INIT <'ABCDE'>
0150 2 #A7 (A5) INIT <'ABCDE'>
0160 2 #A8 (A5) INIT <'ABCDE'>
0170 2 #A9 (A5) INIT <'ABCDE'>
0180 2 #A10 (A5) INIT <'ABCDE'>
0190 2 #A11 (A5) INIT <'ABCDE'>
0200 2 #A12 (A5) INIT <'ABCDE'>
0210 2 #A13 (A5) INIT <'ABCDE'>
0220 2 #A14 (A5) INIT <'ABCDE'>
0230 2 #A15 (A5) INIT <'ABCDE'>
0240 2 #A16 (A5) INIT <'ABCDE'>
0250 2 #A17 (A5) INIT <'ABCDE'>
0260 2 #A18 (A5) INIT <'ABCDE'>
0270 2 #A19 (A5) INIT <'ABCDE'>
0280 2 #A20 (A5) INIT <'ABCDE'>
0290 2 #A21 (A5) INIT <'ABCDE'>
0300 2 #A22 (A5) INIT <'ABCDE'>
0310 2 #A23 (A5) INIT <'ABCDE'>
0320 2 #A24 (A5) INIT <'ABCDE'>
0330 2 #A25 (A5) INIT <'ABCDE'>
0340 2 #A26 (A5) INIT <'ABCDE'>
0350 2 #A27 (A5) INIT <'ABCDE'>
0360 2 #A28 (A5) INIT <'ABCDE'>
0370 2 #A29 (A5) INIT <'ABCDE'>
0380 2 #A30 (A5) INIT <'ABCDE'>
0390 2 #A31 (A5) INIT <'ABCDE'>
0400 2 #A32 (A5) INIT <'ABCDE'>
0410 2 #A33 (A5) INIT <'ABCDE'>
0420 2 #A34 (A5) INIT <'ABCDE'>
0430 2 #A35 (A5) INIT <'ABCDE'>
0440 2 #A36 (A5) INIT <'ABCDE'>
0450 2 #A37 (A5) INIT <'ABCDE'>
0460 2 #A38 (A5) INIT <'ABCDE'>
0470 2 #A39 (A5) INIT <'ABCDE'>
0480 2 #A40 (A5) INIT <'ABCDE'>
0490 2 #A41 (A5) INIT <'ABCDE'>
0500 2 #A42 (A5) INIT <'ABCDE'>
0510 2 #A43 (A5) INIT <'ABCDE'>
0520 2 #A44 (A5) INIT <'ABCDE'>
0530 2 #A45 (A5) INIT <'ABCDE'>
0540 2 #A46 (A5) INIT <'ABCDE'>
0550 2 #A47 (A5) INIT <'ABCDE'>
0560 2 #A48 (A5) INIT <'ABCDE'>
0570 2 #A49 (A5) INIT <'ABCDE'>
0580 2 #A50 (A5) INIT <'ABCDE'>
0590 1 REDEFINE #GROUP
0600 2 #ARRAY (A5/1:50)
0610 1 #LOOP (P7)
0620 END-DEFINE
0630 *
0640 INCLUDE AATITLER
0650 INCLUDE AASETC
0660 *
0670 FOR #LOOP = 1 TO 50000
0680 WRITE WORK FILE 1 #GROUP
0690 END-FOR
0700 *
0710 SETA. SETTIME
0720 READ WORK FILE 1 #GROUP
0730 END-WORK
0740 WRITE // 10T 'READ WORK FILE GROUP TIME' *TIMD (SETA.)
0750 *
0760 SETB. SETTIME
0770 READ WORK FILE 1 #ARRAY (*)
0780 END-WORK
0790 WRITE // 10T 'READ WORK FILE ARRAY TIME' *TIMD (SETB.)
0800 *
0810 END

November 2001 ❖ 23

And the surprising (to me) output.

 PAGE # 1 DATE: Dec 16, 2001
 PROGRAM: READW07 LIBRARY: INSIDE

 READ WORK FILE GROUP TIME 18

 READ WORK FILE ARRAY TIME 17

Wrong again. The times are the same. You will
recall that the array notation made a considerable
difference for WRITE WORK FILE. The same is not
true for READ WORK FILE. It took me a couple of
minutes to realize why.

READ WORK FILE RECORD versus READ
WORK FILE

It is time (in order to explain the output from
READW07) to discuss the major difference be-
tween RWF and RWF RECORD. In a very real
sense, they were designed to address two different
scenarios.

Scenario 1) We are receiving a Work File from
one of our remote sites. This site has a history of
supplying “bad data”. Numeric fields have alpha
data; Alpha fields have “garbage characters”, etc.

Scenario 2) We have a large system. The system
has been designed to work as several job steps. In
order to “pass data” between the job steps, Work
Files are typically written in one job step, then
read in a subsequent job step.

The two scenarios above probably constitute 98%
of the use of Work Files. Consider the second
scenario. Is there a reason, when reading the work-
files you just created, to check and ensure every
field has a valid value (format and length)? Clearly
not. How about the first scenario. Just as clearly,
the answer is yes.

READ WORK FILE (without RECORD) addresses
scenario 1. It checks the validity of every field. This
is quite CPU intensive. By contrast, RWF RECORD
addresses scenario 2. There is no value checking.
How significant is the performance difference? Take
a look at the following program:

0010 * THIS PROGRAM CREATES A WORK FILE WITH 50000 RECORDS
0020 *
0030 * THEN WE COMPARE THE TIME TO READ THIS WORK FILE
0040 * USING READ WORK FILE AND READ WORK FILE RECORD.
0050 *
0060 * THE RATIO ON MY SYSTEM IS ABOUT 5 TO 1 IN FAVOR OF
0070 * THE READ WORK FILE RECORD.
0080 *
0090 DEFINE DATA LOCAL
0100 1 #GROUP (50)
0110 2 #ALPHA (A5) INIT ALL <'ABCDE'>
0120 2 #NUMERIC (N5) INIT ALL <12345>
0130 1 #LOOP (N5)
0140 END-DEFINE
0150 *
0160 INCLUDE AATITLER
0170 INCLUDE AASETC
0180 *
0190 FOR #LOOP = 1 TO 50000
0200 WRITE WORK FILE 1 #GROUP (*)
0210 END-FOR
0230 *
0250 RWFR. SETTIME
0260 READ WORK FILE 1 RECORD #GROUP (*)
0270 END-WORK
0280 WRITE / 10T 'READ WORK FILE RECORD TIME' *TIMD(RWFR.)
0300 *
0310 RWF. SETTIME
0320 READ WORK FILE 1 #GROUP (*)
0330 END-WORK
0340 WRITE // 10T 'READ WORK FILE TIME' *TIMD (RWF.)
0350 *
0360 END

And the rather graphic output:

 PAGE # 1 DATE: 01-12-17
 PROGRAM: READW04 LIBRARY: SNDEMO

 READ WORK FILE RECORD TIME 7

 READ WORK FILE TIME 33

What does this say? Do NOT use READ WORK
FILE if READ WORK FILE RECORD will suffice.
Now to be fair, lets look at one more program.

24 ❖ Inside Natural

0010 * THIS PROGRAM CREATES A WORK FILE WITH 150000 RECORDS
0020 * EACH OF WHICH HAS BUT THREE FIELDS.
0030 *
0040 * THEN WE COMPARE THE TIME TO READ THIS WORK FILE
0050 * USING READ WORK FILE AND READ WORK FILE RECORD.
0060 *
0070 DEFINE DATA LOCAL
0080 1 #GROUP
0090 2 #A (A3) INIT <'ABC'>
0100 2 #B (N5) INIT <12345>
0110 2 #C (A5) INIT <'ABCDE'>
0120 1 #LOOP (P7)
0130 END-DEFINE
0140 *
0150 INCLUDE AATITLER
0160 INCLUDE AASETC
0170 *
0180 FOR #LOOP = 1 TO 150000
0190 WRITE WORK FILE 1 #A #B #C
0200 END-FOR
0220 *
0240 RWFR. SETTIME
0250 READ WORK FILE 1 RECORD #GROUP
0260 END-WORK
0270 WRITE // 10T 'READ WORK FILE RECORD TIME'
0280 *TIMD (RWFR.)
0290 *
0300 RWF. SETTIME
0310 READ WORK FILE 1 #GROUP
0320 END-WORK
0330 WRITE // 10T 'READ WORK FILE TIME' *TIMD (RWF.)
0340 *
0350 END

And our rather different (from above) output.

 PAGE # 1 DATE: Dec 17, 2001
 PROGRAM: READW04 LIBRARY: INSIDE

 READ WORK FILE RECORD TIME 10

 READ WORK FILE TIME 10

Note that the performance difference diminishes
as the number of fields is reduced. Not surprising.
The main difference, as noted above, is validity
checking of fields (yes, there also is some differ-
ence, to be discussed, about how the data is
placed). Reduce the number of fields to a small
number, say less than five, and there is basically
no difference between the two commands.

What does this all mean?

Notice that for READ WORK FILE, Natural must
check the format of all the variables. Thus, #AR-
RAY (1) #ARRAY (2),..etc. must be checked individ-
ually. Hence, Natural cannot simply read in a sin-
gle “chunk” of #ARRAY (1) thru #ARRAY (50). They
are all treated individually, hence the array syn-
tax, #ARRAY (*) is no faster than the Group syntax
(see output from READW07, earlier in the article).

So, array versus non array (individual variables) is
meaningless for READ WORK FILE. For READ
WORK FILE RECORD, there is no comparison to
be made since individual variables are not allowed.

Back to RWF RECORD

When Natural first came out, the READ WORK
FILE RECORD option required a single variable.
That variable could be an array. Somewhere
around Version 2.1 or 2.2, Natural was “en-
hanced”. Group Names suddenly became valid,
and along with them, Group arrays. HOWEVER,
this is an “illusion”. What do I mean?

Consider the following program:

0010 DEFINE DATA LOCAL
0020 1 GROUP-NAME-A
0030 2 #A1 (A3) INIT <'ABC'>
0040 2 #A2 (A3) INIT <'123'>
0050 2 #A3 (A3) INIT <'D5F'>
0060 1 GROUP-NAME-B
0070 2 #B1 (N3)
0080 2 #B2 (A3)
0090 2 #B3 (N3)
0100 1 REDEFINE GROUP-NAME-B
0110 2 #B (A9)
0120 1 #LOOP (P7)
0130 1 #STRING (A200)
0140 END-DEFINE
0150 *
0160 INCLUDE AATITLER
0170 INCLUDE AASETC
0180 *
0190 WRITE WORK FILE 2 GROUP-NAME-A
0200 *
0210 READ WORK FILE 2 ONCE RECORD GROUP-NAME-B
0220 *
0230 WRITE // 5T '=' #B1 5X '=' #B2 5X '=' #B3
0240 // 5T '=' #B
0250 END

The program runs and produces this output.

 PAGE # 1 DATE: Dec 17, 2001
 PROGRAM: WORK19 LIBRARY: INSIDE

 #B1: AB3 #B2: 123 #B3: D56

 #B: ABC123D5F

November 2001 ❖ 25

This is the only place in Natural where a Group
Name is not an abbreviation for its component
fields. Basically, Natural simply uses the Group
Name to supply a starting address for the RWFR
command. Remember that the RECORD option
means that field formats are being ignored. You
can see that in the output above. Natural read
alpha fields into numeric fields without so much
as blinking.

How do I know that the individual fields are being
ignored? Here is the last program with one minor
change.

0010 DEFINE DATA LOCAL
0020 1 GROUP-NAME-A
0030 2 #A1 (A3) INIT <'ABC'>
0040 2 #A2 (A3) INIT <'123'>
0050 2 #A3 (A3) INIT <'D5F'>
0060 1 GROUP-NAME-B
0070 2 #B1 (N3)
0080 2 #B2 (A3)
0090 2 #B3 (N3)
0100 1 REDEFINE GROUP-NAME-B
0110 2 #B (A9)
0120 1 #LOOP (P7)
0130 1 #STRING (A200)
0140 END-DEFINE
0150 *
0160 INCLUDE AATITLER
0170 INCLUDE AASETC
0180 *
0190 WRITE WORK FILE 2 GROUP-NAME-A
0200 *
0210 READ WORK FILE 2 ONCE RECORD #B1 #B2 #B3
0220 *
0230 WRITE // 5T '=' #B1 5X '=' #B2 5X '=' #B3
0240 // 5T '=' #B
0250 END
0260

Note that the READ WORK FILE command on line
0210 now has three variables. Here is the compiler
error message:

NAT0077 Error in data field for READ/WRITE
WORK FILE statement.

A “gotcha”

There is one aspect of READ/WRITE WORK FILE
that deserves special mention here. It has to do
with arrays. To be more precise, it has to do with
what I call “Group Arrays”. This is a structure
such as:

1 #GROUP (10)
2 #A (A5)
2 #B (A3)

Please recall from somewhere at the beginning of
this article, for such a structure, the values are
arranged in memory as:

#A (1) #B (1) #A (2) #B (2)......#A (10) #B (10)

Now for the fun.

Suppose I simply had the statement WRITE
#GROUP (*). The question is, in what sequence will
the data appear? Basically, there are only two
alternatives one can imagine:

#A (1) #B (1) #A (2) #B (2)......#A (10) #B (10)
or

#A (1) #A (2)...#A (10) #B (1) #B (2)......#B (10)

In other words, either we get

#GROUP (1) #GROUP (2)...#GROUP(10)
or,

#A (*) #B (*).

The following program and output resolves this
question.

0010 * THIS PROGRAM DEMONSTRATES THE WRITE'ING OF A GROUP
0020 * ARRAY. IT ALSO DEPICTS THE ARRANGEMENT OF A GROUP
0025 * ARRAY IN MEMORY.
0030 *
0040 * NOTE THAT DATA IS ARRANGED "GROUPWISE" IN MEMORY.
0050 * HOWEVER A WRITE OF #GROUP (*) IS EQUIVALENT TO:
0060 * WRITE #A (*) #B (*) #C (*) WHICH IN TURN IS
0070 * EQUIVALENT TO #A (1) #A (2) #A (3) #B (1) #B (2)
0075 * #B (3) #C (1) #C (2) #C (3)
0080 * WHICH IS WHAT I CALL "FIELD WISE".
0090 *
0100 DEFINE DATA LOCAL
0110 1 #GROUP (3)
0120 2 #A (A3) INIT <'A1A','A2A','A3A'>
0130 2 #B (A3) INIT <'B1B','B2B','B3B'>
0140 2 #C (A3) INIT <'C1C','C2C','C3C'>
0150 1 REDEFINE #GROUP
0160 2 #STRING (A27)
0170 END-DEFINE
0180 *
0190 INCLUDE AATITLER
0200 INCLUDE AASETC
0210 *
0220 WRITE 5T 'OUR DATA STRUCTURE IS:' /
0230 5T '1 #GROUP (3)' /
0240 5T ' 2 #A (A3) INIT <"A1A","A2A","A3A">' /
0250 5T ' 2 #B (A3) INIT <"B1B","B2B","B3B">' /
0260 5T ' 2 #C (A3) INIT <"C1C","C2C","C3C">' /
0270 5T '1 REDEFINE #GROUP' /
0280 5T ' 2 #STRING (A27)' //
0290 5T 'THE NEXT LINE SHOWS MEMORY VIA WRITE #STRING' /
0300 5T #STRING //
0310 5T 'THE NEXT LINE SHOWS WRITE #GROUP (*)' /
0320 5T #GROUP (*)
0330 *
0340 END

26 ❖ Inside Natural

And our output which answers the question posed
above.

 PAGE # 1 DATE: 01-12-16
 PROGRAM: WRITE05 LIBRARY: SNDEMO

 OUR DATA STRUCTURE IS:
 1 #GROUP (3)
 2 #A (A3) INIT <'A1A','A2A','A3A'>
 2 #B (A3) INIT <'B1B','B2B','B3B'>
 2 #C (A3) INIT <'C1C','C2C','C3C'>
 1 REDEFINE #GROUP
 2 #STRING (A27)

 THE NEXT LINE SHOWS MEMORY VIA WRITE #STRING
 A1AB1BC1CA2AB2BC2CA3AB3BC3C

 THE NEXT LINE SHOWS WRITE #GROUP (*)
 A1A A2A A3A B1B B2B B3B C1C C2C C3C

Okay, question answered. For a WRITE #GROUP(*)
(and as we shall see a WRITE WORK FILE) state-
ment, data is written as if the statement was
WRITE #A (*) #B (*) #C(*). Hence, the data is writ-
ten to our screen, “fieldwise”.

Okay, now lets change the WRITE to a WRITE
WORK FILE and do a READ WORK FILE into #A (*)
#B (*) #C(*) to confirm than the work file was
indeed written fieldwise.

0010 * THIS PROGRAM DEMONSTRATES THE WRITE'ING OF A
0020 * GROUP ARRAY TO A WORK FILE. ALSO, WE WILL READ THE
0030 * WORK FILE USING THE SAME SYNTAX.
0040 *
0050 DEFINE DATA LOCAL
0060 1 #GROUP (3)
0070 2 #A (A3) INIT <'A1A','A2A','A3A'>
0080 2 #B (A3) INIT <'B1B','B2B','B3B'>
0090 2 #C (A3) INIT <'C1C','C2C','C3C'>
0100 1 REDEFINE #GROUP
0110 2 #STRING (A27)
0120 END-DEFINE
0130 *
0140 INCLUDE AATITLER
0150 INCLUDE AASETC
0160 *
0170 WRITE 5T
0175 'DATA BEFORE WRITE AND READ WORK FILE #GROUP(*)'
0180 / 5T '-' (50)
0190 / 5T '=' #A (*)
0200 / 5T '=' #B (*)
0210 / 5T '=' #C (*)
0220 WRITE WORK FILE 1 #GROUP (*)
0230 READ WORK FILE 1 ONCE #GROUP (*)
0240 WRITE // 5T
0245 'DATA AFTER WRITE AND READ WORK FILE #GROUP(*)'
0250 / 5T '-' (50)
0260 / 5T '=' #A (*)
0270 / 5T '=' #B (*)
0280 / 5T '=' #C (*)
0290 *
0300 END

And the expected output.

 PAGE # 1 DATE: 01-12-16
 PROGRAM: WRITE05X LIBRARY: SNDEMO

 DATA BEFORE WRITE AND READ WORK FILE #GROUP(*)
 --
 #A: A1A A2A A3A
 #B: B1B B2B B3B
 #C: C1C C2C C3C

 DATA AFTER WRITE AND READ WORK FILE #GROUP(*)
 --
 #A: A1A A2A A3A
 #B: B1B B2B B3B
 #C: C1C C2C C3C

Note that for the statement READ WORK FILE
#GROUP (*) , the #GROUP (*) is interpreted the
same for the WRITE WORK FILE #GROUP (*).

Now for the fun. How about READ WORK FILE
RECORD #GROUP (*)?

0010 * THIS PROGRAM SHOWS THE WRITE'ING OF A GROUP ARRAY
0020 * TO A WORK FILE. ALSO, WE WILL READ THE WORK FILE
0030 * USING THE SAME SYNTAX, BUT IN A READ
0035 * WORK FILE RECORD.
0040 *
0050 DEFINE DATA LOCAL
0060 1 #GROUP (3)
0070 2 #A (A3) INIT <'A1A','A2A','A3A'>
0080 2 #B (A3) INIT <'B1B','B2B','B3B'>
0090 2 #C (A3) INIT <'C1C','C2C','C3C'>
0100 1 REDEFINE #GROUP
0110 2 #STRING (A27)
0120 END-DEFINE
0130 *
0140 INCLUDE AATITLER
0150 INCLUDE AASETC
0160 *
0170 WRITE 5T
0175 'DATA BEFORE WRITE AND READ WORK FILE #GROUP(*)'
0180 / 5T '-' (50)
0190 / 5T '=' #A (*)
0200 / 5T '=' #B (*)
0210 / 5T '=' #C (*)
0220 WRITE WORK FILE 1 #GROUP (*)
0230 READ WORK FILE 1 ONCE RECORD #GROUP (*)
0240 WRITE // 5T 'DATA AFTER WRITE AND READ WORK
0245 RECORD FILE #GROUP(*)'
0250 / 5T '-' (50)
0260 / 5T '=' #A (*)
0270 / 5T '=' #B (*)
0280 / 5T '=' #C (*)
0290 *
0300 END

November 2001 ❖ 27

And the perhaps unexpected output:

 PAGE # 1 DATE: 01-12-18
 PROGRAM: WRITE05Y LIBRARY: SNDEMO

 DATA BEFORE WRITE AND READ WORK FILE #GROUP(*)
 --
 #A: A1A A2A A3A
 #B: B1B B2B B3B
 #C: C1C C2C C3C

 DATA AFTER WRITE AND READ WORK FILE RECORD #GROUP(*)
 --
 #A: A1A B1B C1C
 #B: A2A B2B C2C
 #C: A3A B3B C3C

Okay, what happened???

Compare the output above (WRITE05Y) with the
last output (WRITE05X). Note the difference in the
output.

The explanation is quite simple.

The WRITE WORK FILE #GROUP (*) in both pro-
grams is “translated” into:

WRITE #A (*) #B (*) #C(*).

Thus, the workfile looks like:

A1A A2A A3A B1B B2B B3B C1C C2C C3C
(spaces added for readability)

What does READ WORK FILE RECORD
#GROUP (*) do?

It does NOT get “translated” to anything. Remem-
ber from the discussion above, #GROUP (*) is basi-
cally just supplying a starting address for the read.
Remember, from much earlier, our discussion of
the sequence of occurrences of a group array in
memory? It was:

#A(1)#B(1) #C(1) #A(2) #B(2) #C(2) #A(3) #B(3) #C(3)

Try “matching” the actual data with where READ
WORK FILE RECORD will put the data (sequential
memory locations, starting with the start of
#GROUP(*), which is #A(1))

Clearly: A1A => #A(1) A2A => #B(1) A3A => #C(1)
 B1B => #A(2) etc.

Hence the rather strange output from WRITE05Y.

Be VERY careful when using Group Arrays with
READ WORK FILE RECORD. Unlike READ WORK
FILE, where the same syntax as a WRITE WORK
FILE will return the data to the original “buckets”
from where they came, READ WORK FILE
RECORD will alter the contents sequencing.

Is there a “solution” to this problem?

First thing to note; there is no problem, unless you
consider understanding how Natural works a prob-
lem. I have always considered such knowledge an
asset, not a problem.

Now that we know how the READ WORK FILE
RECORD works, it is a simple matter to alter our
WRITE WORK FILE to be “compatible” with the
READ WORK FILE RECORD.

Instead of WRITE WORK FILE #GROUP (*), which
Natural “translates” to
#A (*) #B (*) #C(*), we could simply WRITE WORK
FILE #GROUP (1) #GROUP (2) #GROUP (3); which
would put our data in the proper sequence for
READ WORK FILE RECORD #GROUP (*).

Alternatively, if we must work with a given work
file sequence (whoever wrote that piece of code
cannot be influenced to change it), we can alter
our READ WORK FILE RECORD structure. We
could have:

0010 * THIS PROGRAM SHOWS THE WRITE'ING OF A GROUP ARRAY
0020 * TO A WORK FILE. ALSO, WE WILL READ THE WORK FILE
0030 * USING SAME SYNTAX, BUT IN A READ WORK FILE RECORD.
0040 *
0050 DEFINE DATA LOCAL
0060 1 #GROUP (3)
0070 2 #A (A3) INIT <'A1A','A2A','A3A'>
0080 2 #B (A3) INIT <'B1B','B2B','B3B'>
0090 2 #C (A3) INIT <'C1C','C2C','C3C'>
0100 1 #GROUP2
0110 2 #AREAD (A3/1:3)
0120 2 #BREAD (A3/1:3)
0130 2 #CREAD (A3/1:3)
0140 END-DEFINE
0150 *
0160 INCLUDE AATITLER
0180 *
0190 WRITE 5T
0195 'DATA BEFORE WRITE AND READ WORK FILE #GROUP(*)'
0200 / 5T '-' (50)
0210 / 5T '=' #A (*)
0220 / 5T '=' #B (*)
0230 / 5T '=' #C (*)
0240 WRITE WORK FILE 1 #GROUP (*)
0250 READ WORK FILE 1 ONCE RECORD #GROUP2
0260 WRITE // 5T
0265 'DATA AFTER WRITE AND READ WORK FILE #GROUP(*)'
0270 / 5T '-' (50)
0280 / 5T '=' #AREAD (*)
0290 / 5T '=' #BREAD (*)
0300 / 5T '=' #CREAD (*)
0310 *
0320 END

And the output:

28 ❖ Inside Natural

 PAGE # 1 DATE: 01-12-18
 PROGRAM: WRITE05Z LIBRARY: SNDEMO

 DATA BEFORE WRITE AND READ WORK FILE #GROUP(*)
 --
 #A: A1A A2A A3A
 #B: B1B B2B B3B
 #C: C1C C2C C3C

 DATA AFTER WRITE AND READ WORK FILE #GROUP(*)
 --
 #AREAD: A1A A2A A3A
 #BREAD: B1B B2B B3B
 #CREAD: C1C C2C C3C

As you can see, the arrays #AREAD, #BREAD, and
#CREAD are the same as #A, #B, and #C. Basical-
ly, we just have to get the WRITE and READs to be
compatible. We can do this by changing either the
structures (used for READ/WRITE), or changing
the WRITE WORK FILE statement. Note we cannot
change the READ WORK FILE RECORD structure
since it is only a single variable or group.

Summary

Contrary to “common knowledge”, neither READ
nor WRITE WORK FILE take advantage of variable
sequencing in memory.

However, array notation greatly impacts WRITE
WORK FILE performance. Also, the number of vari-
ables being written greatly impacts performance of
WWF.

Array notation does not impact the performance of
READ WORK FILE since each occurrence must
still be checked for valid format.

READ WORK FILE RECORD greatly outperforms
READ WORK FILE, however, one must be careful
when using Group Arrays. ❖

And now for something
entirely different

Whereas Thomas’s topics (try saying that fast three
times) were mainly performance oriented, Andreas
topics were quite different. The title of Andreas’s
talk, “Seldom used or unknown features in Natu-
ral” is a giveaway to the emphasis of his presenta-
tion. Andreas, like Thomas, had over twenty dis-
tinct topics and just one hour to present them all.
Hence, I will take several of Andreas’s topics and
expand upon them here.

COMPRESS NUMERIC

Perhaps the most common documentation criti-
cism I have heard over the lifetime of Natural is the
use of Release Notes to document new features. In
most Adabas/Natural shops, the DBA is the recip-
ient of Release Notes. They use them to install the
new release, then place them in a folder some-
where, never to be seen again. Software AG is
working on this, and soliciting ideas as to how to
get the Release Notes into the hands of the pro-
grammers.

One new facility so documented is the new
NUMERIC option for the COMPRESS command.
This was added with SM 3 (or was it 2) of Version
2.3, yet many, probably most, programmers, are
not familiar with it. Here is an example Andreas
used to demonstrate precisely how COMPRESS
and COMPRESS NUMERIC work.

0010 * THIS PROGRAM DEMONSTRATES THE DIFFERENCE BETWEEN
0020 * COMPRESS AND COMPRESS NUMERIC
0030 *
0040 DEFINE DATA LOCAL
0050 1 #A (N3) INIT <-123>
0060 1 #B (N1.2) INIT <1.23>
0070 1 #OUTPUT (A10)
0080 END-DEFINE
0090 *
0100 INCLUDE AATITLER
0110 INCLUDE AASETC
0120 *
0130 COMPRESS #A #B INTO #OUTPUT WITH DELIMITER '*'
0140 WRITE // 5T 'DATA FOR THIS PROGRAM' / 5T '-' (25)
0150 / 5T '=' #A 5X '=' #B ///
0160 5T 'RESULT OF: COMPRESS #A #B INTO'
0165 ' #OUTPUT WITH DELIMITER "*"'
0170 // 5T '=' #OUTPUT
0180 *
0190 COMPRESS NUMERIC #A #B INTO #OUTPUT WITH DELIMITER '*'
0200 WRITE //
0210 5T 'RESULT OF: COMPRESS NUMERIC #A #B'
0215 'INTO #OUTPUT WITH DELIMITER "*"'
0220 // 5T '=' #OUTPUT
0230 *
0240 END

November 2001 ❖ 29

And here is our output:

 PAGE # 1 DATE: Dec 06, 2001
 PROGRAM: COMPR01 LIBRARY: INSIDE

 DATA FOR THIS PROGRAM

 #A: -123 #B: 1.23

 RESULT OF: COMPRESS #A #B INTO #OUTPUT
 WITH DELIMITER '*'

 #OUTPUT: 123*123

 RESULT OF: COMPRESS NUMERIC #A #B INTO #OUTPUT
 WITH DELIMITER '*'

 #OUTPUT: -123*1.23

Okay, it is quite clear what COMPRESS NUMERIC
does. It includes both minus signs and decimal
points. Why doesn’t a simple COMPRESS do this?
If you were to write out both #A and #B with hex
edit masks (e.g. WRITE #B (EM=HHH)), you would
discover that the actual contents of #B is the digits
123. There is no decimal point physically within
the confines of #B.

However, Natural “knows” that the value of #B is
1.23, not 123. If you do arithmetic with #B, Natu-
ral “knows” where the decimal point is. If you
WRITE #B, as you can see in our output, Natural
writes out the implied decimal point.

HOWEVER, if you simply COMPRESS with #B,
Natural treats #B as if it were an alpha string. As
we have discussed, the contents of #B (and #A) is
123. Hence, the perhaps unexpected result of
123*123.

COMPRESS NUMERIC, by contrast, recognizes
that #A and #B are indeed numbers. It checks the
format of the two variables and inserts appropriate
minus sign(s) and decimal points.

My problem with COMPRESS NUMERIC is that it
only takes me partway to what I usually require. I
do find it useful for things like percentages where I
want to create a variable with a value like 84.23 %.
However, when I want to create a variable with a
value such as $ 12,345.67, COMPRESS NUMERIC
will not accomplish my objective. Here is a pro-
gram which demonstrates both the uses just cited.

0010 * THIS PROGRAM DEMONSTRATES THE USE OF COMPRESS
0020 * NUMERIC FOR PERCENTAGES AND MONETARY VALUES.
0030 *
0040 DEFINE DATA LOCAL
0050 1 #A (N8.2) INIT <12345678.99>
0060 1 #B (N3.2) INIT <86.25>
0070 1 #OUTPUT (A15)
0080 END-DEFINE
0090 *
0100 INCLUDE AATITLER
0110 INCLUDE AASETC
0120 *
0130 COMPRESS NUMERIC #B ' %' INTO #OUTPUT LEAVING NO SPACE
0140 WRITE 5T 'HERE IS A GOOD USE FOR COMPRESS NUMERIC'
0150 / 5T 'THE VALUE OF #OUTPUT IS:' #OUTPUT
0160 *
0170 COMPRESS NUMERIC '$' #A INTO #OUTPUT LEAVING NO SPACE
0180 WRITE // 5T 'THIS IS NOT SUCH A GOOD USE FOR'
0185 ' COMPRESS NUMERIC'
0190 / 5T 'RESULT OF: COMPRESS NUMERIC "$ " #A
0195 INTO #OUTPUT LEAVING NO SPACE'
0200 // 5T '=' #OUTPUT
0210 *
0220 END

And our output:

 PAGE # 1 DATE: Dec 07, 2001
 PROGRAM: COMPR02 LIBRARY: INSIDE

 HERE IS A GOOD USE FOR COMPRESS NUMERIC
 THE VALUE OF #OUTPUT IS: 86.25 %

 THIS IS NOT SUCH A GOOD USE FOR COMPRESS NUMERIC
 RESULT OF: COMPRESS NUMERIC '$ ' #A INTO
 #OUTPUT LEAVING NO SPACE

 #OUTPUT: $12345678.99

The problem with COMPRESS NUMERIC for mon-
etary amounts is quite clear. Although we are able
to get the dollar sign and decimal point in the
desired position (I could have a space after the
dollar sign if so desired), I am missing the familiar
delimiters which would separate the value into
“thousands”, namely 12,345,678.99.

There are many ways to address such a require-
ment, so I will depart from Andreas’s presentation
to discuss this.

Tangent

There are two distinct scenarios for creating the
type of output just described. Each has its own
solutions. The first scenario simply involves the
desire to DISPLAY such a value, along with others.
Note that DISPLAY is in capital letters indicating
this is the statement to be employed (as opposed to
WRITE, PRINT, etc).

30 ❖ Inside Natural

There is a very powerful, yet not widely known
(recall the title of Andreas’s talk, “Seldom used or
unknown features in Natural”) combination of pa-
rameters that exists for just the DISPLAY state-
ment. Here is an example of this, along with a
more conventional, single parameter.

0010 * THIS PROGRAM DEMONSTRATES THE USE OF TWO DIFFERENT
0020 * MASKS IN CONJUNCTION WITH DISPLAY
0030 *
0040 DEFINE DATA LOCAL
0050 1 #A (N8.2) INIT <12345678.99>
0060 END-DEFINE
0070 *
0080 INCLUDE AATITLER
0090 INCLUDE AASETC
0100 *
0110 DISPLAY 5T #A (EM=ZZ,ZZZ,ZZ9.99)
0120 5X #A (EM=ZZ,ZZZ,ZZ9.99 IC=$)
0130 *
0140 END

And our output:

 PAGE # 1 DATE: Dec 07, 2001
 PROGRAM: COMPR02X LIBRARY: INSIDE

 #A #A
 ------------- --------------

 12,345,678.99 $12,345,678.99

Note that the use of the Insert Character, IC=$,
allows us to insert the dollar sign. However, sup-
pose the value did not fill the field.

0010 * THIS PROGRAM DEMONSTRATES THE USE OF TWO DIFFERENT
0020 * MASKS IN CONJUNCTION WITH DISPLAY
0030 *
0040 DEFINE DATA LOCAL
0050 1 #A (N8.2) INIT <12345.99>
0060 END-DEFINE
0070 *
0080 INCLUDE AATITLER
0090 INCLUDE AASETC
0100 *
0110 DISPLAY 5T #A (EM=ZZ,ZZZ,ZZ9.99)
0120 5X #A (EM=ZZ,ZZZ,ZZ9.99 IC=$)
0130 *
0140 END

And here is our output.

 PAGE # 1 DATE: Dec 07,
 PROGRAM: COMPR02Y LIBRARY: INSIDE

 #A #A
 ------------- --------------

 12,345.99 $12,345.99

Not to worry, the Z’s in our edit mask cause the
elimination of leading zeroes, and the dollar sign
becomes a “floating” character.

One more little “goodie” to discuss. The Insert
Character does not have to be a single character.
Why is this useful? Suppose I did not want the
dollar sign to be contiguous with the value, but
instead, wanted a blank after the dollar sign. Here
is a program which demonstrates a multi charac-
ter IC.

0010 * THIS PROGRAM DEMONSTRATES THE USE OF TWO DIFFERENT
0020 * MASKS IN CONJUNCTION WITH DISPLAY
0030 *
0040 DEFINE DATA LOCAL
0050 1 #A (N8.2) INIT <12345.99>
0060 END-DEFINE
0070 *
0080 INCLUDE AATITLER
0090 INCLUDE AASETC
0100 *
0110 DISPLAY 5T #A (EM=ZZ,ZZZ,ZZ9.99)
0120 5X #A (EM=ZZ,ZZZ,ZZ9.99 IC='$ ')
0130 *
0140 END

And the output; perhaps more readable than the
previous output.

 PAGE # 1 DATE: Dec 07, 2001
 PROGRAM: COMPR02Z LIBRARY: INSIDE

 #A #A
 ------------- ---------------

 12,345.99 $ 12,345.99

As you can see, the two character IC makes the
output a bit more readable.

WARNING. Thus far, since we were concentrating
on the use of EM and IC, I have only DISPLAY’ed a
single line of output. Take a look at the following
output, which is the same as COMPR02Z output
except there are several lines of output, with vary-
ing values for #A.

 PAGE # 1 DATE: Dec 07,
 PROGRAM: COMPR02Z LIBRARY: INSIDE

 #A #A
 ------------- ---------------

 12,345.99 $ 12,345.99
 1,234,567.99 $ 1,234,567.99
 123.99 $ 123.99
 12,345,678.99 $ 12,345,678.99

November 2001 ❖ 31

I personally do not like the “effect” of the floating
dollar sign in columns of numbers. I prefer either
no dollar sign (as in the column to the left), or a
fixed dollar sign as the leftmost character. Fortu-
nately, Natural has a feature similar to IC that
achieves the fixed dollar sign. The following syn-
tax, with LC rather than IC, achieves this:

#A (EM=ZZ,ZZZ,ZZ9.99 LC='$ ')

And here is the output shown as a new column to
the right of the preceding output.

 PAGE # 1 DATE: Dec 07, 2001
 PROGRAM: COMPR02Z LIBRARY: INSIDE

 #A #A #A
 ------------- --------------- ---------------

 12,345.99 $ 12,345.99 $ 12,345.99
 1,234,567.99 $ 1,234,567.99 $ 1,234,567.99
 123.99 $ 123.99 $ 123.99
 12,345,678.99 $ 12,345,678.99 $ 12,345,678.99

Of the three, I prefer the output without any dollar
sign. However, if different lines were to have differ-
ent currencies, I would prefer the output to the
right over the output in the middle. Clearly, this is
highly subjective. Talk to your users regarding
which output they would prefer. It is equally sim-
ple to generate any of the three in Natural.

Continuing on with our tangent, the second sce-
nario is that we require our “result” in a new
variable. This as opposed to merely presenting the
output on a screen or report. Recall that the COM-
PRESS NUMERIC command sufficed to get our
decimal point and the currency indicator, but failed
to get the desired commas to delineate a string
longer than three integers.

Please remember our assumptions. We are start-
ing with a numeric field (e.g. N8.2). We want to end
up with an alpha field with contents such as $
12,345.99. Ideally, this string will be left justified
in our variable, although we could always, after
the fact, do a MOVE LEFT JUSTIFIED command.

There are a number of ways to approach this prob-
lem. I have always found it useful, when discuss-
ing this with students, to point out that although
COMPRESS, all by itself, is useful for adding “edit
characters” to the ends of a numeric field, and
COMPRESS NUMERIC is useful for adding deci-
mal points, there is no COMPRESS variation that
will “embed” characters such as the comma delim-
iters we wish to separate every three integers.

There is, however, a command that is designed to
perform this function (among its many functions),
namely MOVE EDITED.

0010 * THIS PROGRAM DEMONSTRATES A SHORTCOMING OF
0020 * COMPRESS NUMERIC; AND THE "MESSY" PROCEDURE
0030 * NECESSARY TO PRODUCE A SIMPLE RESULT.
0040 *
0050 DEFINE DATA LOCAL
0060 1 #A (N8.2) INIT <1234.99>
0070 1 #OUTPUT (A15)
0080 END-DEFINE
0090 *
0100 INCLUDE AATITLER
0110 INCLUDE AASETC
0120 *
0130 COMPRESS NUMERIC '$ ' #A INTO #OUTPUT
0135 LEAVING NO SPACE
0140 WRITE //
0150 5T 'RESULT OF: COMPRESS NUMERIC "$ " #A'
0155 ' INTO #OUTPUT LEAVING NO SPACE'
0160 // 5T '=' #OUTPUT
0170 *
0180 MOVE EDITED #A (EM=ZZ,ZZZ,ZZ9.99) TO #OUTPUT
0190 MOVE LEFT #OUTPUT TO #OUTPUT
0200 COMPRESS '$' #OUTPUT INTO #OUTPUT
0210 WRITE // 5T 'RESULT OF: MOVE EDITED'
0215 '#A (EM=" $ "ZZ,ZZZ,ZZ9.99) TO #OUTPUT'
0220 // 5T '=' #OUTPUT
0230 END

And our output.

 PAGE # 1 DATE: Dec 07, 2001
 PROGRAM: COMPR03 LIBRARY: INSIDE

 RESULT OF: COMPRESS NUMERIC '$ ' #A INTO #OUTPUT
 LEAVING NO SPACE

 #OUTPUT: $1234.99

 RESULT OF: MOVE EDITED #A (EM=' $ 'ZZ,ZZZ,ZZ9.99)
 TO #OUTPUT

 #OUTPUT: $ 1,234.99

As you can see, the COMPRESS NUMERIC came
close, but did not get the commas. The only im-
provement I have come up with to the code shown
above is to eliminate the COMPRESS command.

0010 * THIS PROGRAM DEMONSTRATES THE DIFFERENCE BETWEEN
0020 * COMPRESS AND COMPRESS NUMERIC
0030 *
0040 DEFINE DATA LOCAL
0050 1 #A (N8.2) INIT <1234.99>
0060 1 #OUTPUT (A15)
0070 1 REDEFINE #OUTPUT
0080 2 #DOLLAR (A2)
0090 2 #VALUE (A13)
0100 END-DEFINE
0110 *
0150 MOVE '$ ' TO #DOLLAR
0160 MOVE EDITED #A (EM=ZZ,ZZZ,ZZZ.99) TO #VALUE
0170 MOVE LEFT JUSTIFIED #VALUE TO #VALUE
0180 WRITE // 5T 'RESULT OF: MOVE EDITED AND MOVE LEFT'
0190 // 5T '=' #OUTPUT
0200 END

32 ❖ Inside Natural

Note the use of a REDEFINE to isolate the dollar
sign and a blank.

 PAGE # 1 DATE: Dec 07, 2001
 PROGRAM: COMPR04 LIBRARY: INSIDE

 RESULT OF: MOVE EDITED AND MOVE LEFT

 #OUTPUT: $ 1,234.99

MOVE EDITED and MOVE de-EDIT

Andreas discussed one topic that has always been
near the top of my list of things to change in
Natural. The MOVE EDITED command performs
two functions that are basically the opposite of one
another. It can be used to add editing characters
to a variable, or, it can be used to remove editing
characters.

How does Natural know which function you wish
to perform? The location of the edit mask. A com-
mand like:

MOVE EDITED #A (EM=...) TO #B

will apply the specified edit mask (which usually
involves adding edit characters) to #A to produce
#B.

By contrast:

MOVE EDITED #C TO #D (EM=...)

will remove the edit characters from #C to produce
#D.

I have long thought this should be done via anoth-
er command like MOVE AND DE-EDIT, or some-
thing like that. It is very common to find program-
mers who were taught the “edit” function of MOVE
EDIT, but not taught the “de-edit” function. The
following program demonstrates both functions.

0010 DEFINE DATA LOCAL
0020 1 #A (A10) INIT <'ABC'>
0030 1 #B (A10)
0040 1 #C (A10)
0050 1 #D (A10)
0060 END-DEFINE
0070 *
0080 INCLUDE AATITLER
0090 INCLUDE AASETC

0100 *
0110 WRITE 5T 'INITIAL VALUES:'
0120 / 5T '=' #A 5X '=' #B '=' #C //
0130 MOVE EDITED #A (EM=X***X++X) TO #B
0140 WRITE 5T 'VALUES AFTER MOVE EDITED #A (EM=X***X++X) TO
#B'
0150 / 5T '=' #A 5X '=' #B '=' #C //
0160 *
0170 MOVE EDITED #B TO #C (EM=X***X++X)
0180 WRITE 5T 'VALUES AFTER MOVE EDITED #B (EM=X***X++X) TO
#C'
0190 / 5T '=' #A 5X '=' #B '=' #C
0200
0210 END

And the output:

 PAGE # 1 DATE: Dec 07, 2001
 PROGRAM: EDITED01 LIBRARY: INSIDE

 INITIAL VALUES:
 #A: ABC #B: #C:

 VALUES AFTER MOVE EDITED #A (EM=X***X++X) TO #B
 #A: ABC #B: A***B++C #C:

 VALUES AFTER MOVE EDITED #B (EM=X***X++X) TO #C
 #A: ABC #B: A***B++C #C: ABC

It is fairly simple to follow what happened. The
first MOVE EDITED command started with #A,
which had value ABC. It applied the edit mask
EM=X***X++X and placed the result in #B.

The second MOVE EDITED command is what I
prefer to call a MOVE AND DE-EDIT command. It
started with #B, whose value is A***B++C. It then
“removed” the editing characters contained in the
edit mask to create #C, whose value, not surpris-
ingly, is identical to #A.

WARNING

As noted above, there are really two distinct capa-
bilities provided by the single command MOVE
EDITED. The edit capability (as opposed to the de-
edit capability) is rather forgiving with regard to
typos/errors. What do I mean by this? Suppose I
want the edit mask shown in the preceding pro-
gram, but accidently typed (EM=X****X++X), which
has one asterisk more than what I really wanted.
The program would run, albeit with incorrect out-
put, which I would hopefully notice. Suppose I
forgot one of the X’s, something like EM=X***++X?
Again, the program would run, but the output
would be wrong.

November 2001 ❖ 33

By contrast, the de-edit capability is rather unfor-
giving with regard to typos. Suppose I omitted one
asterisk from the edit mask in the second MOVE
EDITED of the program above. I would receive the
following error message:

NAT1143 Input does not correspond to input edit
mask.

The point is that the de-edit option is examining
the source field, looking for the specified edit char-
acters. If they are not there, you get an error
message. By contrast, the edit option is not exam-
ining the source field. It merely places the edit
characters in the appropriate place within the
source field. You can even have too many (or too
few) X’s in the edit mask and your program will
still run. ❖

The STACK

I thought it was rather interesting that Andreas
included material on the Stack in his presentation.
I too have found that many programmers do not
even know what Natural’s Stack is, and even fewer
know what they can do with it. Indeed, I have
found that many programmers knowledge of the
Stack is limited to the fact that somehow a FETCH
command places data on the Stack, and you can
“read” this data with an INPUT statement. It has
been about three years since I have had an article
on the Stack. Next issue I will intersperse text and
examples from that article with material from An-
dreas’s presentation. ❖

The %C and %Z Commandsı

 have long observed that most programmers do
ot know about the so called “Terminal Comm-
ands”. These are commands that start with a
ercent sign and are “delivered” to the Natural Run
Module. For this reason, I have always called these
“Monitor Commands”. Another reason for the name
change is that these commands can typically also
be issued via a SET CONTROL statement within a
Natural program, and hence are quite apart from
“terminal” activity. Basically, a percent sign fol-
lowed by any letter of the alphabet does something
in Natural. Andreas only had time to discuss a
couple of these commands. Over the next several
issues, I will endeavor to cover many more of these
commands. This issue, I will discuss the ones that
Andreas covered.

We will start with the rather simple %C command.
You may have noticed, in almost all my sample
programs, two INCLUDE statements. One, AATI-
TLER, is nothing more than a WRITE TITLE state-
ment. The other, AASETC, looks like the following:

0010 *
0020 AT END OF PAGE
0030 SET CONTROL 'C'
0040 END-ENDPAGE
0050 *

Lets talk about this a bit. As I have discussed in
earlier issues, I now run most programs on both a
mainframe (Version 3.1.4) and a PC (Version 4.1.2;
soon to be Version 5). Actually, I do my first runs
on the PC, and merely “confirm” that the main-
frame output is the same. When I am working on
the mainframe, I take screen snaps using software
on my PC (from which I am dialing in to the
mainframe).

When I am running on the PC there is a minor
problem. Natural on the PC has been enhanced to
permit the generation of bit mapped pictures as
well as text. The text, therefore is generated as bit
maps, not characters. Why is this a problem?
Sometimes an output page does not fit into the
space I have defined in my page layout software
(Pagemaker). As text, it is easy to reduce space
(vertically and horizontally) between output; as a
bit map, this is very messy (playing in a drawing
program).

So, by issuing a SET CONTROL ‘C’ command at
the end of every page, the output not only gets sent
to my screen (as a bit map), it also gets sent to the
program editor area (as text). It is then a simple
matter for me to cut and paste the program and
output in whatever manner I please.

One thing to reiterate. The %C command is “effec-
tive” only for the next page to be sent from the page
buffer to the screen. Thus, I have to place it inside
an AT END OF PAGE clause so that all pages will
be sent to the source area. Any commands in this
clause are executed before the transfer takes place.

Try this facility. Add AASETC to a program. Now
run the program. After seeing your output, go into
the editor. You will see all your output there. By
the way, this is not a bad debugging aid. You get to
see your output and the code that generated it.
Use the editor’s split screen facility to look at both
at the same time.

34 ❖ Inside Natural

Suppose you want to store away the output of a
program as a text member, without the program
itself. The command %Z clears the source area. So
you might issue a SET CONTROL ‘Z’ at the start of
a program, then issue SET CONTROL ‘C’ for every
page. You will now have all your output in the
source area ready for commands like SET TYPE
TEXT and SAVE MYTEXT.

There is another rather interesting use for %C. You
can write a Natural program which creates a Natu-
ral program. Is this hard? No, and yes. It is not
hard to demonstrate how this works. Here is a
simple program that does this:

0010 * THIS PROGRAM WILL CREATE A SIMPLE NATURAL
0020 * PROGRAM IN THE SOURCE AREA. THEN IT WILL
0030 * STACK A COMMAND TO RUN THE CREATED PROGRAM.
0040 *
0050 SET CONTROL 'Z' /* CLEARS SOURCE AREA
0060 INCLUDE AASETC
0070 WRITE NOTITLE
0075 'WRITE "THIS IS FROM THE CREATED PROGRAM"'
0080 WRITE 'END'
0090 STACK TOP COMMAND 'RUN'
0100 STOP
0110 END

Run the program above. The first screen you see
will consist of:

WRITE "THIS IS FROM THE CREATED PROGRAM"
END (1)

Hit enter. Now you will see:

Page 1 11/02/2001 09:22:12

THIS IS FROM THE CREATED PROGRAM (2)

Hit enter again. You will be back in the source
program editor. The contents of the editor, howev-
er, will not be the program you saw above. Instead,
it will be the two lines:

WRITE "THIS IS FROM THE CREATED PROGRAM"
END (3)

Some commentary. The first executable statement
in the program is SET CONTROL ‘Z’. This clears
the program editor area.

Note that I had an INCLUDE AASETC (see discus-
sion above) next in the program. This is a non
procedural clause. It does not get executed now.

The next statements are both WRITE statements,
the first of which specifies NOTITLE. Together,
these statements generate two lines of output in
our buffer.

Next, we place a RUN command at the top of our
STACK (see preceding article on the use of the
Stack).

Next we have a STOP command, which actually
starts a lot of things. Since the program is ending,
Natural checks the print buffer. There is output
waiting to be sent to the screen. Natural now exe-
cutes the AT END OF PAGE clause which sends
the print buffer to the program editor area.

Natural also sends our print buffer to the screen.
Hence, we see our output (1) and the program
pauses waiting for our action. We hit enter. Con-
trol returns to the Natural monitor which “sees”
the RUN command waiting for it on the Stack.
Natural RUN’s the program in the program editor
which consists of a WRITE statement and an END
statement.

The program creates the output shown as (2). Note
that we do not have a NOTITLE in the WRITE
statement, hence we get the page number, date
and time. We hit enter. We are back in the program
editor. The code sitting there (3), is the code we
“created”.

Tangent again

I must confess that I would not use this technique
to create a program. I favor using a “skeleton”
program with lots of “ampersand variables” that
are substituted for at compile time. For those of
you who have not seen this technique, here is a
simple example.

First, the skeleton program. You cannot STOW
this program, only save it. The “ampersand vari-
ables” &FILE and &FIELD will be substituted for,
by the compiler, with the values of the global vari-
ables +FILE and +FIELD.

0010 * THIS IS A "SKELETON" PROGRAM
0015 * WITH “AMPERSAND VARIABLES”.
0020 * THERE WILL BE A "DRIVER" PROGRAM WHICH WILL
0030 * INTERACT WITH THE USER; ACQUIRE VALUES TO BE
0040 * SUBSTITUTED IN THIS PROGRAM; AND FINALLY
0050 * RUN THIS PROGRAM
0060 *
0070 HISTOGRAM &FILE &FIELD
0080 DISPLAY &FIELD *NUMBER
0090 LOOP
0100 END

November 2001 ❖ 35

And how do you get values in +FILE and +FIELD?
Easy. You have a “driver” program like:

0010 * THIS IS THE "DRIVER" PROGRAM FOR AMPERS01.
0020 * IT WILL ACQUIRE VALUES FOR +FILE AND +FIELD,
0030 * THEN RUN AMPERS01.
0040 *
0050 INPUT (AD=M) 2/10 'ENTER FILE HERE===>' +FILE (A30)
0060 5/10 'ENTER FIELD HERE==>' +FIELD (A30)
0070 *
0080 RUN 'AMPERS01'
0090 END

Note that the driver program RUN’s and does not
FETCH AMPERS01. Okay, what happens when
AMPERS01 is RUN? Natural takes the contents of
the similarly named global variables and substi-
tutes them for the “ampersand variables”. Thus,
suppose when the INPUT statement were run, I
had typed VEHICLES for the file name and MAKE
for the field name. They are now the contents of
+FILE and +FIELD.

Natural now does the appropriate substitution of
the value of +FILE for &FILE in the HISTOGRAM
statement. The value of +FIELD is placed in the
two statements that have &FIELD (HISTOGRAM
and DISPLAY). Thus AMPERS01 is now the follow-
ing program:

0070 HISTOGRAM VEHICLES MAKE
0080 DISPLAY MAKE *NUMBER
0090 LOOP
0100 END

Many shops do not permit the use of this facility.
Why? I haven’t a clue. It is the easiest and fastest
way to create a system that will permit endusers to
generate their own reports. Many shops object to
the fact that the “skeleton” programs are source
rather than object code. Thus, they have to be
compiled. This goes against the idea that “produc-
tion” environments should contain only object
code.

My “standard” reporting skeleton looks like this:

FIND &FILE WITH &WITH
DISPLAY &FIELDS
LOOP
END

More about this skeleton later, first, some hints
about creating a user friendly interface to even this
simple reporting program (or the preceding skele-
ton), and, expanding the system to create a fairly
sophisticated user tool.

Data Entry

If at all possible, never let the user type anything
directly. Why? Consider the HISTOGRAM driver
program shown above. Suppose the user makes a
typo when entering the file name; they type VEHI-
CLSE instead of VEHICLES. If you do not “catch”
this error in the driver program, they will get a
compiler error when the driver program RUN’s the
skeleton program.

There are two ways to avoid such a disaster. The
one I prefer is not to let the user type anything.
Instead, I would show the user a list of files and let
them select a file name from a list. Then, I would
access my Natural file definitions in Predict to
select all the appropriate fields (using ADABAS-
DE-TYPE) to show the user another list. This list
would have all the descriptors from the selected
file. Again, the user would select an entry from a
list; they would not type the field name.

It should be noted that there are drawbacks to this
“list driven” approach. You may find yourself writ-
ing different “driver programs” for different users
(or user groups). A small price to pay given the
alternative. That is, to let the user type things like
file names, then validate them and respond with
REINPUT if the entry is incorrect. Much messier to
code, less efficient, and not nearly as user friendly.
This is especially true when expanding the system
as will be discussed below.

Building on the FIND modelı

kay, time to play with the simple FIND model
hown above. Here is the first enhancement:ı

FIND &FILE WITH &WITH
&WHERE
DISPLAY &FIELDS
LOOP
END

There is a significant difference between the imple-
mentation of a WITH clause (which is required for
a FIND) and a WHERE clause, which is optional.
Note that the word “WITH” appears in our FIND
command, but the word WHERE does not.

Why? The user may not select criteria for a WHERE
clause. Suppose I had coded the report program
with a statement such as:

36 ❖ Inside Natural

FIND &FILE WITH &WITH WHERE &WHERE

The Natural compiler would object to the word
WHERE if +WHERE were blank. This way,
+WHERE either has a complete WHERE clause, or
is blank. Since Natural is “freeform”, it does not
object to a blank line in a program.

Please note; what I will now show you is NOT the
way I do this. More about that below. But suppose
I had a line in the INPUT statement of the driver
such as:

10T ‘ENTER WHERE CLAUSE HERE==> ‘ #WHERE

After the INPUT statement I might have something
like:

IF #WHERE EQ ‘ ‘
 RESET +WHERE
 ELSE
 COMPRESS ‘WHERE’ #WHERE INTO +WHERE
 END-IF

Why would I not handle the input this way? Imag-
ine all the mistakes an enduser might make in
typing a value for #WHERE. I would instead guide
the user with screens of field names, operators (EQ
GE LT, etc) , and constants or field names for the
last argument. I would make sure that an alpha
constant had apostrophes around it; I do not want
to leave that to the enduser. By contrast, however,
note that the interface above is perfectly suitable
for a programmer. I use this myself all the time. If I
make a typo, I get my compiler error message, re-
run the driver, and fix my typing. An enduser
would not be happy with such an interface.

Okay, time to enhance our system a bit. Users like
to see page headers and/or trailers. Easily done.
Simply have &WRITETITLE and &WRITETRAILER
somewhere in the report program. Somewhere in
the INPUT statement have:

12/10 ‘ENTER HEADER HERE==>’ #HEADER

After the INPUT statement:

IF #HEADER EQ ‘ ‘
RESET +WRITETITLE
ELSE
COMPRESS ‘WRITE TITLE’ ‘”’ #HEADER ‘”’
INTO +WRITETITLE
END-IF

Basically, every additional capability you might
want to have adds just one more ampersand vari-
able to the report program. In the driver program,
you will need the code to create a text string value
for the corresponding Global Variable. I have built
programs like this that have optional SORT BY
capability, AT BREAK clauses, AT END OF PAGE
clauses, AT END OF DATA clauses, COMPUTE
statements, ad nauseam.

Making the model into a “system”

At the end of your driver program have code like:

STACK TOP COMMAND ‘EXEC DRIVER’
RUN ‘REPORTER’

In this way, when your report is finished, you will
be returned to the driver program.

Depending on how elaborate the model is, you
might want to show the user an INPUT screen with
all the data from their last report. This will make it
easy for them to create a report and then, say, run
the report for several different cities by only chang-
ing the argument of a FIND.

By the way, there is nothing “magical” or required
about there being a FIND statement in the report
program. This could just as easily be a READ
LOGICAL where the user supplies the file and field
names and, optionally, starting and ending values.

The best part of all this is, “it isn’t hard”. Actually,
the hardest part is building the driver program.
Okay, depending on your shop, it may be convinc-
ing someone that it is okay to have source code in
a production environment. ❖

Performance

Some of Andreas’s hints fell into the performance
area, the title of Thomas’s talk. Here is a rather
simple technique for saving a few machine cycles.

0010 * THIS PROGRAM CONTRASTS TWO MOVES
0020 DEFINE DATA LOCAL
0030 1 #A (A3)
0040 1 #LOOP (P7)
0050 END-DEFINE
0060 *
0070 INCLUDE AATITLER
0080 INCLUDE AASETC

November 2001 ❖ 37

0090 *
0100 SETA. SETTIME
0110 FOR #LOOP = 1 TO 150000
0120 MOVE 'A' TO #A
0130 END-FOR
0140 WRITE 5T 'DIFFERENT SIZE TIME' *TIMD (SETA.)
0150 *
0160 SETB. SETTIME
0170 FOR #LOOP = 1 TO 150000
0180 MOVE 'A ' TO #A
0190 END-FOR
0200 WRITE // 5T 'SAME SIZE TIME' *TIMD (SETB.)
0210 *
0220 SETC. SETTIME
0230 FOR #LOOP = 1 TO 150000
0240 IGNORE
0250 END-FOR
0260 WRITE // 5T 'FOR LOOP TIME' *TIMD (SETC.)
0270 *
0280 END

The difference between the two loops is quite sim-
ple. In the second loop, our alpha constant is the
same length as the target of the MOVE. Only one
operation is required.

In the first loop, our alpha constant is but one
character in length. Natural performs two opera-
tions; first it nulls out #A, then it moves the con-
stant into the first position of #A.

 PAGE # 1 DATE: Dec 12, 2001
 PROGRAM: SIZE01 LIBRARY: SYSTEM

 DIFFERENT SIZE TIME 10

 SAME SIZE TIME 9

 FOR LOOP TIME 8

The performance difference reflects our discussion
above. When you subtract out the common FOR
loop overhead of 8 from both times, the differently
sized alpha constant produces a time that is twice
the same sized alpha constant; two operations
rather than one.

Just for the “fun of it”, I ran the same program on
the mainframe (above times are Natural 4 under
NT). The results were similar.

 PAGE # 1 DATE: 12/13/01
 PROGRAM: STEVE302 LIBRARY: SYSTEM

 DIFFERENT SIZE TIME 6
 SAME SIZE TIME 5
 FOR LOOP TIME 4

Actually, I did not immediately run the mainframe
version. I was continuing on with my tests on the
PC. After confirming Andreas comments regarding
alpha constants (on the PC), I decided to confirm
the similar comments regarding numeric con-
stants. (Note: Andreas made it a point to remind
everyone that numeric constants like 1.00 are
stored as packed decimal numbers.) Remember, I
was on the PC when I ran the following program:

0010 *
0020 DEFINE DATA LOCAL
0030 1 #A (P8.2)
0040 1 #LOOP (P7)
0050 END-DEFINE
0060 *
0070 INCLUDE AATITLER
0080 INCLUDE AASETC
0090 *
0100 SETA. SETTIME
0110 FOR #LOOP = 1 TO 250000
0120 ADD 1 TO #A
0130 END-FOR
0140 WRITE 5T 'DIFFERENT SIZE TIME' *TIMD (SETA.)
0150 *
0160 RESET #A
0170 *
0180 SETB. SETTIME
0190 FOR #LOOP = 1 TO 250000
0200 ADD 1.00 TO #A
0210 END-FOR
0220 WRITE // 5T 'SAME SIZE TIME' *TIMD (SETB.)
0230 *
0240 SETC. SETTIME
0250 FOR #LOOP = 1 TO 250000
0260 IGNORE
0270 END-FOR
0280 WRITE // 5T 'FOR LOOP TIME' *TIMD (SETC.)
0290 *
0300 END

As you can see, this is just a numeric counterpart
to the preceding example. The point is that there
should be a performance difference due to the
different formats in the first loop, as opposed to
the same formats in the second loop.

 PAGE # 1 DATE: Dec 13, 2001
 PROGRAM: SIZE02 LIBRARY: INSIDE

 DIFFERENT SIZE TIME 20

 SAME SIZE TIME 26

 FOR LOOP TIME 14

Whoops. The differently sized ADD produced the
faster time. Actually, by quite a bit. Subtract out
the common 14, and the times are 6 versus 12; a
ratio of two to one.

38 ❖ Inside Natural

I was doing this at night, when my brain cells
function at less than peak capacity. That’s my
story, and I am sticking to it. Perhaps you already
know the problem. I did not at the time. Hence,
this is where I switched to the mainframe. First, I
ran the alpha program (STEVE300, above), which
confirmed the PC results. Then, I ran the numeric
counterpart. Here are the results (note; the times
below were actually the same for both P8.2 and
N8.2 as the format for #A):

 PAGE # 1 DATE: 12/13/01
 PROGRAM: STEVE300 LIBRARY: SYSTEM

 DIFFERENT SIZE TIME 9

 SAME SIZE TIME 6

 FOR LOOP TIME 4

Now that is what I had expected. Subtracting out
the common 4, the SAME SIZE loop outperformed
the DIFFERENT SIZE loop by 2.5 to 1.

Why the discrepancy between the PC and main-
frame times?

In the vernacular of today, duuuh. Mainframe na-
tive arithmetic is packed decimal. PC native arith-
metic is integer. Despite the late hour, I realized
what I had done, and set out to rectify the prob-
lem.

Did I mention it was late at night? Here is my re-
write (I was still on the mainframe):

0010 *
0020 DEFINE DATA LOCAL
0030 1 #A (I4)
0040 1 #LOOP (P7)
0050 END-DEFINE
0060 *
0070 INCLUDE AATITLER
0080 INCLUDE AASETC
0090 *
0100 SETA. SETTIME
0110 FOR #LOOP = 1 TO 250000
0120 ADD 1 TO #A
0130 END-FOR
0140 WRITE 5T 'DIFFERENT SIZE TIME' *TIMD (SETA.)
0150 *
0160 RESET #A
0170 *
0180 SETB. SETTIME
0190 FOR #LOOP = 1 TO 250000
0200 ADD 1.00 TO #A
0210 END-FOR
0220 WRITE // 5T 'SAME SIZE TIME' *TIMD (SETB.)
0230 *
0240 SETC. SETTIME
0250 FOR #LOOP = 1 TO 250000
0260 IGNORE
0270 END-FOR
0280 WRITE // 5T 'FOR LOOP TIME' *TIMD (SETC.)
0290 *
0300 END

And the output:

 MORE
 PAGE # 1 DATE: 12/13/01
 PROGRAM: STEVE303 LIBRARY: SYSTEM

 DIFFERENT SIZE TIME 7

 SAME SIZE TIME 12

 FOR LOOP TIME 4

Whoops again. Why the disparity? Why is “same
size” again so much greater than “different size”?
Simple. Take a look at the ADD 1.00 to #A. Lets
see, this is “mixed mode” arithmetic. Natural has
to convert the integer #A to packed decimal, add
the packed decimal constant 1.00 to #A, then store
the result back in #A.

A switch in the program (see below):

 > > + Program STEVE304 Lib SYSTEM
 0010 DEFINE DATA LOCAL
 0020 1 #A (I4)
 0030 1 #ONE (I4) INIT <1>
 0040 1 #LOOP (P7)
 0050 END-DEFINE
 0060 **
 0070 INCLUDE AATITLER
 0080 **
 0090 SETA. SETTIME
 0100 FOR #LOOP = 1 TO 250000
 0110 ADD 1 TO #A
 0120 END-FOR
 0130 WRITE 5T 'DIFFERENT FORMAT TIME' *TIMD (SETA.)
 0140 **
 0150 RESET #A
 0160 **
 0170 SETB. SETTIME
 0180 FOR #LOOP = 1 TO 250000
 0190 ADD #ONE TO #A
 0200 END-FOR

::::::

And our output:

MORE
 PAGE # 1 DATE: 12/13/01
 PROGRAM: STEVE304 LIBRARY: SYSTEM
 DIFFERENT FORMAT TIME 7
 SAME FORMAT TIME 6
 FOR LOOP TIME 4

 This now made sense. All INTEGER format oper-
ands outperformed the mixed format add by 50 %
(don’t forget to subtract the FOR loop time).

November 2001 ❖ 39

Okay, back to the PC for a more meaningful com-
parison.

0010 *
0020 DEFINE DATA LOCAL
0030 1 #A (P8.2)
0040 1 #AONE (P8.2) INIT <1.00>
0050 1 #B (I4)
0060 1 #BONE (I4) INIT <1>
0070 1 #LOOP (P7)
0080 END-DEFINE
0090 *
0100 INCLUDE AATITLER
0110 INCLUDE AASETC
0120 *
0130 SETA. SETTIME
0140 FOR #LOOP = 1 TO 250000
0150 ADD #AONE TO #A
0160 END-FOR
0170 WRITE 5T 'PACKED TIME' *TIMD (SETA.)
0180 *
0190 RESET #A
0200 *
0210 SETB. SETTIME
0220 FOR #LOOP = 1 TO 250000
0230 ADD #BONE TO #B
0240 END-FOR
0250 WRITE // 5T 'INTEGER TIME' *TIMD (SETB.)
0260 *
0270 SETC. SETTIME
0280 FOR #LOOP = 1 TO 250000
0290 IGNORE
0300 END-FOR
0310 WRITE // 5T 'FOR LOOP TIME' *TIMD (SETC.)
0320 *
0330 END

 PAGE # 1 DATE: Dec 13, 2001
 PROGRAM: SIZE03 LIBRARY: INSIDE

 PACKED TIME 27

 INTEGER TIME 19

 FOR LOOP TIME 13

Well that certainly explains the strange results we
saw much earlier (SIZE02). Note how much more
efficient the integer arithmetic is. In SIZE02, the
simulation of a Packed 1.00 is apparently much
more expensive than the simulation of a Packed 1.
Hence, the strange results from SIZE02.

WARNING

There have been several postings on SAG-L recent-
ly from people considering a transition from a
mainframe to a PC server. Most of the questions/
answers had to do with fairly serious consider-
ations, like different sort sequences (ASCII versus
EBCDIC), starting values for supers, etc. There
was little discussion of performance. As I men-
tioned last issue, I will be doing some research in
this area. It does appear that standalone PC’s can
produce performance to rival mainframes that are
serving many users.

One area, however, that requires no further re-
search is arithmetic. As noted in the example
above, and earlier examples, PC arithmetic is best
done as integer arithmetic, mainframe arithmetic
is best done as packed decimal. In both cases,
same length is important.

Array Subscripts

Natural uses integers for array subscripts. Thus I
format subscripts are more efficient than any oth-
er format. Here is a program which contrasts I and
P formatted subscripts.

0010 DEFINE DATA LOCAL
0020 1 #INT1 (I4) INIT <1>
0030 1 #INT2 (I4) INIT <2>
0040 1 #DEC1 (P3) INIT <1>
0050 1 #DEC2 (P3) INIT <2>
0060 1 #ARRAY (A5/1:2)
0070 1 #LOOP (P7)
0080 END-DEFINE
0090 *
0100 INCLUDE AATITLER
0110 INCLUDE AASETC
0120 *
0130 SETA. SETTIME
0140 FOR #LOOP = 1 TO 300000
0150 MOVE #ARRAY (#INT1) TO #ARRAY (#INT2)
0160 END-FOR
0170 WRITE 10T 'INTEGER TIME' *TIMD (SETA.)
0180 *
0190 SETB. SETTIME
0200 FOR #LOOP = 1 TO 300000
0210 MOVE #ARRAY (#DEC1) TO #ARRAY (#DEC2)
0220 END-FOR
0230 WRITE 10T 'DECIMAL TIME' *TIMD (SETB.)
0240 *
0250 SETC. SETTIME
0260 FOR #LOOP = 1 TO 300000
0270 IGNORE
0280 END-FOR
0290 WRITE 10T 'FOR LOOP TIME' *TIMD (SETC.)
0300 *
0310
0320 END

And our output.

 PAGE # 1 DATE: Dec 13, 2001
 PROGRAM: ARRAY01 LIBRARY: INSIDE

 INTEGER TIME 28
 DECIMAL TIME 29
 FOR LOOP TIME 16

Okay, the difference is not all that horrendous.
Twelve versus thirteen (after subtracting out the
common 16 FOR loop time). It is, however, a very
simple habit to get into, and it will save a few CPU
cycles.

40 ❖ Inside Natural

More performance

I am known as being “anti-Construct”. Guilty as
charged. One of my complaints with Construct has
very little to do with Construct itself. Okay, a little.
Many programmers read Construct code, and, for
some strange reason, think the code they see is
“really good code”. Why they would think that is
beyond me. Compilers, like Cobol, Fortran, and
even Natural, cannot produce as good code as a
good assembler programmer. Higher level code gen-
erators, like Construct, cannot produce as good
code as a good compiler level programmer. These
statements, in today’s world anyway, are not open
to debate. One does not use Construct if perfor-
mance is a major issue. Yet people look at Con-
struct code and say, “Construct does it this way, so
it must be good”.

One thing Construct does is create “small objects”.
Programmers see this and write their own code
this way, with unnecessary internal/external sub-
routines. Is this expensive? Look below:

0010 * THIS PROGRAM DEMONSTRATES THE EFFICIENCY
0020 * OF INTERNAL AND EXTERNAL SUBROUTINES IN NATURAL.
0030 * ALSO COMPARED, A CALLNAT TO A SUBPROGRAM.
0040 DEFINE DATA LOCAL
0050 1 #A (A5)
0060 1 #B (A5)
0070 1 #LOOP (P5)
0080 END-DEFINE
0090 *
0130 CTRL. SETTIME
0140 FOR #LOOP = 1 TO 50000
0150 IGNORE
0160 END-FOR
0170 WRITE 3/10 'CONTROL TIME' *TIMD (CTRL.)
0180 *
0190 INLN. SETTIME
0200 FOR #LOOP = 1 TO 50000
0210 MOVE #A TO #B
0220 END-FOR
0230 WRITE // 10T 'INLINE TIME' *TIMD (INLN.)
0240 *
0250 ISUB. SETTIME
0260 FOR #LOOP = 1 TO 50000
0270 PERFORM MOVER
0280 END-FOR
0290 WRITE // 10T 'INTERNAL PERFORM TIME' *TIMD (ISUB.)
0300 *
0310 DEFINE SUBROUTINE MOVER
0320 MOVE #A TO #B
0330 END-SUBROUTINE
0340 *
0350 ESUB. SETTIME
0360 FOR #LOOP = 1 TO 50000
0370 PERFORM EXMOVE #A #B
0380 END-FOR
0390 WRITE // 10T 'EXTERNAL PERFORM TIME' *TIMD (ESUB.)
0400 *
0410 CSUB. SETTIME
0420 FOR #LOOP = 1 TO 50000
0430 CALLNAT 'DEFINS11' #A #B
0440 END-FOR
0450 WRITE // 10T 'CALLNAT TIME' *TIMD (CSUB.)
0460 *
0470 END

And the rather enlightening output.

 PAGE # 1 DATE: 01-12-13
 PROGRAM: DEFINS10 LIBRARY: SNDEMO

 CONTROL TIME 2
 INLINE TIME 3
 INTERNAL PERFORM TIME 4
 EXTERNAL PERFORM TIME 22
 CALLNAT TIME 27

Yes, this is a rather absurd piece of code (a simple
MOVE) to place in a separate object. Trust me, I
have seen isolated code almost as simple. The
most ridiculous? An IF statement that did a MOVE
to one of two places.

Look at the numbers. An internal subroutine is
twice as expensive as inline code. An external sub-
routine is TEN times as expensive as an internal
subroutine, and hence, TWENTY times as expen-
sive as inline code. I am really not sure why the
subprogram is so much more expensive than the
external subroutine (a future article perhaps).

Now please, do not tell other programmers that
Steve Robinson does not approve of subroutines
and subprograms. Nothing could be further from
the truth. I use them all the time. I just do not use
them without some thought as to what I will gain,
and what it will cost me.

Remember, every time you call (PERFORM,
CALLNAT, FETCH) another object, Natural has to:

Find it in the buffer pool (and load it, if not there)
Deallocate the current object
Allocate the new object; then Call it

When the object ends, control passes back to the
initiating object, and the steps above are repeated.

I have seen internal subroutines that are per-
formed from exactly ONE place. In one case the
programmer said it improved readability. Sorry, I
can enclose code within two lines of fifty asterisks
each, with comments, and it will be as readable as
any subroutine. The “cost” of this nonsense? Sub-
stantial. It was in a READ loop of some two million
records. At least it was an internal subroutine. I
have seen external subroutines used which are
only PERFORM’ed in one program.

Subroutines (in the generic, not Natural sense)
have never been efficiency tools. You have always
paid a price for them. In return you get simplified
maintenance and widespread use. If the latter will
not apply to your intended use, you should proba-
bly have the code inline. ❖

